The purpose of this paper is to calculate the specific absorption rate (SAR) reduction in a muscle cube with metamaterial attachment. The finite-difference time-domain (FDTD) method has been used to evaluate the SAR in a realistic anatomically based model of the muscle cube. In this paper, we have designed the single-negative metamaterials from a periodic arrangement of split ring resonators (SRRs). By properly designing the structural parameter of the SRRs, the effective medium parameter can be tuned negative at the 900 MHz and 1800 MHz bands. Numerical results concerning the SAR values in the muscle cube in the presence of resonators exhibit significant SAR reduction. These results can provide useful information when designing safety-compliant mobile communication equipment.
Choanal stenosis has recently been recognized as a late complication of radiation therapy for nasopharyngeal carcinoma. The management of velopharyngeal stenosis is challenging with high risk of restenosis. We report a case of velopharyngeal stenosis post-radiotherapy and illustrated the use of mitomycin-C to prevent restenosis. Mitomycin-C application has being shown useful adjunct to surgical technique in managing nasopharyngeal stenosis for surgeons.