Displaying all 2 publications

Abstract:
Sort:
  1. Moad AI, Lan TM, Kaur G, Hashim H, Mabruk MJ
    J Cutan Pathol, 2009 Feb;36(2):183-9.
    PMID: 18564286 DOI: 10.1111/j.1600-0560.2008.00989.x
    The tumor suppressor gene p15(INK4b) is a cyclin-dependent kinase inhibitor, in which its inactivation has been determined in primary tumors and in several tumor-derived cell lines. The precise role of p15(INK4b) protein expression in cutaneous squamous cell carcinoma (SCC) is currently not known. In a previous study, we have shown the frequent occurrence of allelic imbalance/loss of heterozygosity in cutaneous SCC using two microsatellite markers flanking the p15(INK4b) gene. This study is a continuation of our previous study and aims to determine the possible role of p15(INK4b) protein expression in the genesis of cutaneous SCC. P15(INK4b) protein expression was determined using immunohistochemical approach in 107 cases of cutaneous SCC tissue arrays and 19 cases of normal human skin tissues. The expression of p15(INK4b) was significantly reduced in the cutaneous SCC cases as compared with normal human skin (p = 0.017 and p < 0.05). However, there were no significant relationship between clinicopathologic variables of the patients (age, sex and tumor grade) and p15(INK4b) protein expression. The absence of p15(INK4b) expression in the majority of tissue microarray cores of cutaneous SCC indicated that p15(INK4b) could possibly be involved in the pathogenesis of cutaneous SCC.
    Matched MeSH terms: Neoplasms, Squamous Cell/metabolism*
  2. Alabsi AM, Lim KL, Paterson IC, Ali-Saeed R, Muharram BA
    Biomed Res Int, 2016;2016:4904016.
    PMID: 27123447 DOI: 10.1155/2016/4904016
    Dracaena cinnabari Balf.f. is a red resin endemic to Socotra Island, Yemen. Although there have been several reports on its therapeutic properties, information on its cytotoxicity and anticancer effects is very limited. This study utilized a bioassay-guided fractionation approach to determine the cytotoxic and apoptosis-inducing effects of D. cinnabari on human oral squamous cell carcinoma (OSCC). The cytotoxic effects of D. cinnabari crude extract were observed in a panel of OSCC cell lines and were most pronounced in H400. Only fractions DCc and DCd were active on H400 cells; subfractions DCc15 and DCd16 exhibited the greatest cytotoxicity against H400 cells and D. cinnabari inhibited cells proliferation in a time-dependent manner. This was achieved primarily via apoptosis where externalization of phospholipid phosphatidylserine was observed using DAPI/Annexin V fluorescence double staining mechanism studied through mitochondrial membrane potential assay cytochrome c enzyme-linked immunosorbent and caspases activities revealed depolarization of mitochondrial membrane potential (MMP) and significant activation of caspases 9 and 3/7, concomitant with S phase arrest. Apoptotic proteins array suggested that MMP was regulated by Bcl-2 proteins family as results demonstrated an upregulation of Bax, Bad, and Bid as well as downregulation of Bcl-2. Hence, D. cinnabari has the potential to be developed as an anticancer agent.
    Matched MeSH terms: Neoplasms, Squamous Cell/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links