Displaying all 2 publications

Abstract:
Sort:
  1. Loh KB, Ramli N, Tan LK, Roziah M, Rahmat K, Ariffin H
    Eur Radiol, 2012 Jul;22(7):1413-26.
    PMID: 22434420 DOI: 10.1007/s00330-012-2396-3
    OBJECTIVES: The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas.

    METHODS: Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction.

    RESULTS: DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued.

    CONCLUSION: DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data.

    KEY POINTS: Diffusion tensor imaging outperforms conventional MRI in depicting white matter maturation. • DTI will become an important clinical tool for diagnosing paediatric neurological diseases. • DTI appears especially helpful for developmental abnormalities, tumours and white matter disease. • An automated processing pipeline assists quantitative analysis of high throughput DTI data.

    Matched MeSH terms: Nerve Fibers, Myelinated/ultrastructure*
  2. Kumar Potu B, Jagadeesan S, Bhat KM, Rao Sirasanagandla S
    Morphologie, 2013 Jun;97(317):31-7.
    PMID: 23806306 DOI: 10.1016/j.morpho.2013.04.004
    The retromolar foramen (RMF) and retromolar canal (RMC) are the anatomical structures of the mandible located in retromolar fossa behind the third molar tooth. This foramen and canal contain neurovascular structures which provide accessory/additional innervation to the mandibular molars and the buccal area. These neurovascular contents of the canal gain more importance in medical and dental practice, because these elements are vulnerable to damage during placement of osteointegrated implants, endodontic treatment and sagittal split osteotomy surgeries and a detailed knowledge of this anatomical variation would be vital in understanding failed inferior alveolar nerve blockage, spread of infection and also metastasis. Although few studies have been conducted in the past showing the incidence and types in different population groups, a lacunae in comprehensive review of this structure is lacking. Though this variation posed challenging situations for the practicing surgeons, it has been quite neglected and the incidence of it is not well presented in all the textbooks. Hence, we made an attempt to provide a consolidated review regarding variations and clinical applications of the RMF and RMC.
    Matched MeSH terms: Nerve Fibers, Myelinated/ultrastructure
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links