Displaying all 8 publications

Abstract:
Sort:
  1. Hizam DA, Jong WL, Zin HM, Ng KH, Ung NM
    Med Dosim, 2021 04 08;46(3):310-317.
    PMID: 33838998 DOI: 10.1016/j.meddos.2021.03.003
    Intensity-modulated radiotherapy (IMRT) treatment planning for head and neck cancer is challenging and complex due to many organs at risk (OAR) in this region. The experience and skills of planners may result in substantial variability of treatment plan quality. This study assessed the performance of IMRT planning in Malaysia and observed plan quality variation among participating centers. The computed tomography dataset containing contoured target volumes and OAR was provided to participating centers. This is to control variations in contouring the target volumes and OARs by oncologists. The planner at each center was instructed to complete the treatment plan based on clinical practice with a given prescription, and the plan was analyzed against the planning goals provided. The quality of completed treatment plans was analyzed using the plan quality index (PQI), in which a score of 0 indicated that all dose objectives and constraints were achieved. A total of 23 plans were received from all participating centers comprising 14 VMAT, 7 IMRT, and 2 tomotherapy plans. The PQI indexes of these plans ranged from 0 to 0.65, indicating a wide variation of plan quality nationwide. Results also reported 5 out of 21 plans achieved all dose objectives and constraints showing more professional training is needed for planners in Malaysia. Understanding of treatment planning system and computational physics could also help in improving the quality of treatment plans for IMRT delivery.
    Matched MeSH terms: Organs at Risk
  2. Meyers SM, Winter JD, Obeidi Y, Chung P, Menard C, Warde P, et al.
    Med Dosim, 2023 11 18;49(2):150-158.
    PMID: 37985297 DOI: 10.1016/j.meddos.2023.10.008
    Postoperative prostate radiotherapy requires large planning target volume (PTV) margins to account for motion and deformation of the prostate bed. Adaptive radiation therapy (ART) can incorporate image-guidance data to personalize PTVs that maintain coverage while reducing toxicity. We present feasibility and dosimetry results of a prospective study of postprostatectomy ART. Twenty-one patients were treated with single-adaptation ART. Conventional treatments were delivered for fractions 1 to 6 and adapted plans for the remaining 27 fractions. Clinical target volumes (CTVs) and small bowel delineated on fraction 1 to 4 CBCT were used to generate adapted PTVs and planning organ-at-risk (OAR) volumes for adapted plans. PTV volume and OAR dose were compared between ART and conventional using Wilcoxon signed-rank tests. Weekly CBCT were used to assess the fraction of CTV covered by PTV, CTV D99, and small bowel D1cc. Clinical metrics were compared using a Student's t-test (p < 0.05 significant). Offline adaptive planning required 1.9 ± 0.4 days (mean ± SD). ART decreased mean adapted PTV volume 61 ± 37 cc and bladder wall D50 compared with conventional treatment (p < 0.01). The CTV was fully covered for 96% (97%) of fractions with ART (conventional). Reconstructing dose on weekly CBCT, a nonsignificant reduction in CTV D99 was observed with ART (94%) compared to conventional (96%). Reduced CTV D99 with ART was significantly correlated with large anterior-posterior rectal diameter on simulation CT. ART reduced the number of fractions exceeding our institution's small bowel D1c limit from 14% to 7%. This study has demonstrated the feasibility of offline ART for post-prostatectomy cancer. ART facilitates PTV volume reduction while maintaining reasonable CTV coverage and can reduce the dose to adjacent normal tissues.
    Matched MeSH terms: Organs at Risk
  3. Jong WL, Ung NM, Wong JH, Ng KH, Wan Ishak WZ, Abdul Malik R, et al.
    Phys Med, 2016 Nov;32(11):1466-1474.
    PMID: 27842982 DOI: 10.1016/j.ejmp.2016.10.022
    The purpose of this study is to measure patient skin dose in tangential breast radiotherapy. Treatment planning dose calculation algorithm such as Pencil Beam Convolution (PBC) and in vivo dosimetry techniques such as radiochromic film can be used to accurately monitor radiation doses at tissue depths, but they are inaccurate for skin dose measurement. A MOSFET-based (MOSkin) detector was used to measure skin dose in this study. Tangential breast radiotherapies ("bolus" and "no bolus") were simulated on an anthropomorphic phantom and the skin doses were measured. Skin doses were also measured in 13 patients undergoing each of the techniques. In the patient study, the EBT2 measurements and PBC calculation tended to over-estimate the skin dose compared with the MOSkin detector (p<0.05) in the "no bolus radiotherapy". No significant differences were observed in the "bolus radiotherapy" (p>0.05). The results from patients were similar to that of the phantom study. This shows that the EBT2 measurement and PBC calculation, while able to predict accurate doses at tissue depths, are inaccurate in predicting doses at build-up regions. The clinical application of the MOSkin detectors showed that the average total skin doses received by patients were 1662±129cGy (medial) and 1893±199cGy (lateral) during "no bolus radiotherapy". The average total skin doses were 4030±72cGy (medial) and 4004±91cGy (lateral) for "bolus radiotherapy". In some cases, patient skin doses were shown to exceed the dose toxicity level for skin erythema. Hence, a suitable device for in vivo dosimetry is necessary to accurately determine skin dose.
    Matched MeSH terms: Organs at Risk/radiation effects
  4. Rasmussen ME, Akbarov K, Titovich E, Nijkamp JA, Van Elmpt W, Primdahl H, et al.
    JCO Glob Oncol, 2024 Aug;10:e2400173.
    PMID: 39236283 DOI: 10.1200/GO.24.00173
    PURPOSE: Most research on artificial intelligence-based auto-contouring as template (AI-assisted contouring) for organs-at-risk (OARs) stem from high-income countries. The effect and safety are, however, likely to depend on local factors. This study aimed to investigate the effects of AI-assisted contouring and teaching on contouring time and contour quality among radiation oncologists (ROs) working in low- and middle-income countries (LMICs).

    MATERIALS AND METHODS: Ninety-seven ROs were randomly assigned to either manual or AI-assisted contouring of eight OARs for two head-and-neck cancer cases with an in-between teaching session on contouring guidelines. Thereby, the effect of teaching (yes/no) and AI-assisted contouring (yes/no) was quantified. Second, ROs completed short-term and long-term follow-up cases all using AI assistance. Contour quality was quantified with Dice Similarity Coefficient (DSC) between ROs' contours and expert consensus contours. Groups were compared using absolute differences in medians with 95% CIs.

    RESULTS: AI-assisted contouring without previous teaching increased absolute DSC for optic nerve (by 0.05 [0.01; 0.10]), oral cavity (0.10 [0.06; 0.13]), parotid (0.07 [0.05; 0.12]), spinal cord (0.04 [0.01; 0.06]), and mandible (0.02 [0.01; 0.03]). Contouring time decreased for brain stem (-1.41 [-2.44; -0.25]), mandible (-6.60 [-8.09; -3.35]), optic nerve (-0.19 [-0.47; -0.02]), parotid (-1.80 [-2.66; -0.32]), and thyroid (-1.03 [-2.18; -0.05]). Without AI-assisted contouring, teaching increased DSC for oral cavity (0.05 [0.01; 0.09]) and thyroid (0.04 [0.02; 0.07]), and contouring time increased for mandible (2.36 [-0.51; 5.14]), oral cavity (1.42 [-0.08; 4.14]), and thyroid (1.60 [-0.04; 2.22]).

    CONCLUSION: The study suggested that AI-assisted contouring is safe and beneficial to ROs working in LMICs. Prospective clinical trials on AI-assisted contouring should, however, be conducted upon clinical implementation to confirm the effects.

    Matched MeSH terms: Organs at Risk/radiation effects
  5. Radaideh, K.M., Matalqah, L.M., Tajuddin, A.A., Lee Luen, F.W., Bauk, S., Abdel Munem, E.M.E
    MyJurnal
    The ultimate check of the actual dose delivered to a patient in radiotherapy can be achieved by using dosimetric measurements. The aims of this study were to develop and evaluate a custom handmade head and neck phantom for evaluation of Three-Dimensional Conformal Radiation Therapy (3D-CRT) dose planning and delivery. A phantom of head and neck region of a medium built male patient with nasopharyngeal cancer was constructed from Perspex material. Primary and secondary Planning Target Volume (PTV) and twelve Organs at Risk (OAR) were delineated using Treatment Planning System (TPS) guided by computed tomography printout transverse images. One hundred and seven (107) holes distributed among the organs were loaded with Rod-shaped Thermoluminescent dosimeters (LiF:Mg,Ti TLDs) after common and individual calibration. Head and neck phantom was imaged, planned and irradiated conformally (3D-CRT) by linear accelerator (LINAC Siemens Artiste). The planned predicted doses by TPS at PTV and OAR regions were obtained and compared with the TLD measured doses using the phantom. Repeated TLD measurements were reproducible with a percent standard deviation of < 3.5%. Moreover, the average of dose discrepancies between TLDs reading and TPS predicted doses were found to be < 5.3%. The phantom’s preliminary results have proved to be a valuable tool for 3D-CRT treatment dose verification.
    Matched MeSH terms: Organs at Risk
  6. Yu L, Tang TLS, Cassim N, Livingstone A, Cassidy D, Kairn T, et al.
    J Appl Clin Med Phys, 2019 Nov;20(11):189-198.
    PMID: 31613053 DOI: 10.1002/acm2.12726
    PURPOSE: Gamma evaluation is the most commonly used technique for comparison of dose distributions for patient-specific pretreatment quality assurance in radiation therapy. Alternative dose comparison techniques have been developed but not widely implemented. This study aimed to compare and evaluate the performance of several previously published alternatives to the gamma evaluation technique, by systematically evaluating a large number of patient-specific quality assurance results.

    METHODS: The agreement indices (or pass rates) for global and local gamma evaluation, maximum allowed dose difference (MADD) and divide and conquer (D&C) techniques were calculated using a selection of acceptance criteria for 429 patient-specific pretreatment quality assurance measurements. Regression analysis was used to quantify the similarity of behavior of each technique, to determine whether possible variations in sensitivity might be present.

    RESULTS: The results demonstrated that the behavior of D&C gamma analysis and MADD box analysis differs from any other dose comparison techniques, whereas MADD gamma analysis exhibits similar performance to the standard global gamma analysis. Local gamma analysis had the least variation in behavior with criteria selection. Agreement indices calculated for 2%/2 mm and 2%/3 mm, and 3%/2 mm and 3%/3 mm were correlated for most comparison techniques.

    CONCLUSION: Radiation oncology treatment centers looking to compare between different dose comparison techniques, criteria or lower dose thresholds may apply the results of this study to estimate the expected change in calculated agreement indices and possible variation in sensitivity to delivery dose errors.

    Matched MeSH terms: Organs at Risk/radiation effects
  7. Cheah SK, Matthews T, Teh BS
    Asian Pac J Cancer Prev, 2016;17(9):4233-4235.
    PMID: 27797223
    BACKGROUND: Whole brain radiotherapy (WBRT) and stereotactic radiosurgery were frequently used to palliate patients with brain metastases. It remains controversial which modality or combination of therapy is superior especially in the setting of limited number of brain metastases. The availability of newer medical therapy that improves survival highlighted the importance of reducing long term radiation toxicity associated with WBRT. In this study, we aim to demonstrate the hippocampal sparing technique with whole brain and integrated simultaneous boost Materials and Methods: Planning data from 10 patients with 1-5 brain metastases treated with SRS were identified. Based on the contouring guideline from RTOG atlas, we identified and contoured the hippocampus with 5mm isocentric expansion to form the hippocampal avoidance structure. The plan was to deliver hippocampal sparing whole brain radiotherapy (HSWBRT) of 30 Gy in 10 fractions and simultaneous boost to metastatic lesions of 30 Gy in 10 fractions each.

    RESULTS: The PTV, hippocampus and hippocampal avoidance volumes ranges between 1.00 - 39.00 cc., 2.50 - 5.30 cc and 26.47 - 36.30 cc respectively. The mean hippocampus dose for the HSWBRT and HSWBRT and SIB plans was 8.06 Gy and 12.47 respectively. The max dose of optic nerve, optic chiasm and brainstem were kept below acceptable range of 37.5 Gy.

    CONCLUSIONS: The findings from this dosimetric study demonstrated the feasibility and safety of treating limited brain metastases with HSWBRT and SIB. It is possible to achieve the best of both worlds by combining HSWBRT and SIB to achieve maximal local intracranial control while maintaining as low a dose as possible to the hippocampus thereby preserving memory and quality of life.

    Matched MeSH terms: Organs at Risk/radiation effects
  8. Ratnasingam J, Karim N, Paramasivam SS, Ibrahim L, Lim LL, Tan AT, et al.
    Pituitary, 2015 Aug;18(4):448-55.
    PMID: 25134488 DOI: 10.1007/s11102-014-0593-6
    PURPOSE: Radiation fields for nasopharyngeal cancer (NPC) include the base of skull, which places the hypothalamus and pituitary at risk of damage. We aimed to establish the prevalence, pattern and severity of hypothalamic pituitary (HP) dysfunction amongst NPC survivors.

    METHODS: We studied 50 patients (31 males) with mean age 57 ± 12.2 years who had treatment for NPC between 3 and 21 years (median 8 years) without pre-existing HP disorder from other causes. All patients had a baseline cortisol, fT4, TSH, LH, FSH, oestradiol/testosterone, prolactin and renal function. All patients underwent dynamic testing with insulin tolerance test to assess the somatotroph and corticotroph axes. Baseline blood measurements were used to assess thyrotroph, gonadotroph and lactotroph function.

    RESULTS: Hypopituitarism was present in 82% of patients, 30% single axis, 28% two axes, 18% three axes and 6% four axes deficiencies. Somatotroph deficiency was most common (78%) while corticotroph, gonadotroph and thyrotroph deficiencies were noted in 40% (4 complete/16 partial), 22 and 4% of the patients respectively. Hyperprolactinaemia was present in 30% of patients. The development of HP dysfunction was significantly associated with the time elapsed from irradiation, OR 2.5 (1.2, 5.3), p = 0.02, for every 2 years post treatment. The use of concurrent chemo-irradiation (CCRT) compared to those who had radiotherapy alone was also significantly associated with HP dysfunction, OR 14.5 (2.4, 87.7), p < 0.01.

    CONCLUSION: Despite low awareness and detection rates, HP dysfunction post-NPC irradiation is common. Use of CCRT may augment time related pituitary damage. As these endocrinopathies result in significant morbidity and mortality we recommend periodic assessment of pituitary function amongst NPC survivors.

    Matched MeSH terms: Organs at Risk
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links