In the present study, a series of nine stable 3,4,5-methoxylphenyl-containing asymmetrical diarylpentanoids, derivatives of curcuminoids, have been synthesized, characterized and evaluated for their in-vitro anti-cancer potential against a panel of BRAF- and KRAS-mutated colorectal cancer cell lines including T84, LoVo and SW620, HT29, RKO and NCI-H508, respectively. Structure-activity relationship study on cytotoxicity of tested compounds suggested that the presence of meta-hydroxyl and adjacent dimethoxyl groups are crucial for enhanced cytotoxicity of diarylpentanoids. Among the evaluated analogs, 8 has been identified as the lead compound due to its highest chemotherapeutic index of 9.9 and nano molar scale cytotoxicity against SW620 and RKO. Colonies formation and cell cycle analyses on 8-treated RKO cells showed that 8 exhibits strong anti-proliferative activity by inducing G2/M-phase cell arrest. Subsequent flow cytometry based annexin-V and DCFHDA studies suggested that 8 could induce apoptosis through intracellular ROS-dependent pathway. Further Western blot studies confirmed that 8 has induced intrinsic apoptosis in RKO cells through the up-regulations of Bad and Bax pro-apoptotic proteins and down-regulations of Bcl-2 and Bcl-xL pro-survival proteins. In all, the present results suggest that 8 could be a potent lead which deserves further modification and investigation in the development of small molecule-based anti-colorectal cancer agents.
A series of twenty-four 2-benzoyl-6-benzylidenecyclohexanone analogs were synthesized and evaluated for their nitric oxide inhibition and antioxidant activity. Six compounds (3, 8, 10, 17, 18 and 19) were found to exhibit significant NO inhibitory activity in LPS/IFN-induced RAW 264.7 macrophages, of which compound 10 demonstrated the highest activity with the IC50 value of 4.2 ± 0.2 μM. Furthermore, two compounds (10 and 17) displayed antioxidant activity upon both the DPPH scavenging and FRAP analyses. However, none of the 2-benzoyl-6-benzylidenecyclohexanone analogs significantly scavenged NO radical. Structure-activity comparison suggested that 3,4-dihydroxylphenyl ring is crucial for bioactivities of the 2-benzoyl-6-benzylidenecyclohexanone analogs. The results from this study and the reports from previous studies indicated that compound 10 could be a candidate for further investigation on its potential as a new anti-inflammatory agent.