The distribution of red cell phosphoglucomutase (PGM) subtypes was determined by starch-gel electrophoresis and isoelectric focusing in a group of 2,484 unrelated individuals from ten Mongoloid populations of East Asia. The sample comprised 998 Chinese from various localities--Singapore, 325; Malaysia, 270; Taiwan, 276; Hong Kong, 67; Fouzhou, 60--as well as 342 Koreans; 252 Filipinos; 529 Thais; 336 Malays, and 27 Indonesians. Altogether 15 phenotypes controlled by four common and five rare alleles at the PGM1 locus were observed in these populations. The frequency of the most frequent allele (PGM1+) varied from 0.56 to 0.74, with the highest frequency observed in the Singapore Chinese and the lowest in the Malays. Within the Chinese from different localities a significant degree of heterogeneity was observed at the PGM1 locus. The rare allele (PGM17)6 was observed only among the Chinese, Thais, and Malays, while the PGM1 was lacking in the Filipinos. A new allele with ahigh pI (6.5) was observed in a low frequency in all the populations but the Malays.
A combination of a modified Feret' (Silvae Genet. 1971, 20, 46-50) extraction buffer and two types of electrophoresis with acrylamide and starch gels were used to characterize allozymes in mature vegetative tissue of a commercially high value species of rattans (Calamus subinermis). From the analysis of allelic segregation from single maternal rattans and their offspring, genetic control of the 16 observed banding zones, which were consistently scorable, was assumed. Seventeen gene loci were identified. The percentage of polymorphic loci within Calamus subinermis was much higher (70.5%) than expected levels of genetic diversity for tropical woody and non-woody species. It is thought that the protocol described may be applied to the analysis of the genetic diversity of all the endangered Calamus species.