Displaying all 5 publications

Abstract:
Sort:
  1. Wiesmann UN, DiDonato S, Herschkowitz NN
    Biochem Biophys Res Commun, 1975 Oct 27;66(4):1338-43.
    PMID: 4
    Matched MeSH terms: Pinocytosis/drug effects
  2. Ichimizu S, Watanabe H, Maeda H, Hamasaki K, Ikegami K, Chuang VTG, et al.
    J Control Release, 2019 06 28;304:156-163.
    PMID: 31082432 DOI: 10.1016/j.jconrel.2019.05.015
    We recently developed a cell-penetrating drug carrier composed of albumin (HSA) combined with palmitoyl-cyclic-(D-Arg)12. While it is possible that the palmitoyl-cyclic-(D-Arg)12/HSA enters the cell mainly via macropinocytosis, the mechanism responsible for the induction of macropinocytosis and endosomal escape remain unknown. We report herein that palmitoyl-cyclic-(D-Arg)12/HSA might interact with heparan sulfate proteoglycan and the chemokine receptor CXCR4 followed by multiple activations of the PKC/PI3K/JNK/mTOR signaling pathways to induce macropinocytosis. This result was further confirmed by a co-treatment with 70 kDa dextran, a macropinocytosis marker. Using liposomes that mimic endosomes, the leakage of 5,6-carboxyfluorescein from liposome was observed in the presence of palmitoyl-cyclic-(D-Arg)12/HSA only in the case of the anionic late endosome-like liposomes but not the neutral early endosome-like liposomes. Heparin largely inhibited this leakage, suggesting the importance of electrostatic interactions between palmitoyl-cyclic-(D-Arg)12/HSA and the late-endosomal membrane. Immunofluorescence staining and Western blotting data indicated that the intact HSA could be transferred from endosomes to the cytosol. These collective data suggest that the palmitoyl-cyclic-(D-Arg)12/HSA is internalized via macropinocytosis and intact HSA is released from the late endosomes to the cytoplasm before the endosomes fuse with lysosomes. Palmitoyl-cyclic-(D-Arg)12/HSA not only functions as an intracellular drug delivery carrier but also as an inducer of macropinocytosis.
    Matched MeSH terms: Pinocytosis/drug effects
  3. Loh LN, McCarthy EMC, Narang P, Khan NA, Ward TH
    Traffic, 2017 11;18(11):733-746.
    PMID: 28799243 DOI: 10.1111/tra.12508
    Eukaryotic cells utilize multiple endocytic pathways for specific uptake of ligands or molecules, and these pathways are commonly hijacked by pathogens to enable host cell invasion. Escherichia coli K1, a pathogenic bacterium that causes neonatal meningitis, invades the endothelium of the blood-brain barrier, but the entry route remains unclear. Here, we demonstrate that the bacteria trigger an actin-mediated uptake route, stimulating fluid phase uptake, membrane ruffling and macropinocytosis. The route of uptake requires intact lipid rafts as shown by cholesterol depletion. Using a variety of perturbants we demonstrate that small Rho GTPases and their downstream effectors have a significant effect on bacterial invasion. Furthermore, clathrin-mediated endocytosis appears to play an indirect role in E. coli K1 uptake. The data suggest that the bacteria effect a complex interplay between the Rho GTPases to increase their chances of uptake by macropinocytosis into human brain microvascular endothelial cells.
    Matched MeSH terms: Pinocytosis/physiology*
  4. Chaudhuri JD
    Med Sci Monit, 2000 Nov-Dec;6(6):1213-22.
    PMID: 11208482
    The blood brain barrier (BBB) is a highly dynamic structure and consists of endothelial cells, which are characterized by the presence of tight junctions and relative lack of endocytic vesicles. The tight junctions are reinforced by the foot processes of the astrocytes. The BBB functions through these specialised structures, to maintain the environment of the brain in a steady state by regulating the influx and efflux of substances. The protective effect of the BBB is however, lost during bacterial and viral infections. The primary mechanism operative are an increase in the permeability of the BBB and/or direct invasion of the brain by microorganisms. Since the BBB is relatively impermeable to chemotherapeutic agents the treatment of CNS infections is difficult. This paper aims to examine the various mechanisms by which infection spreads to the brain, and suggest measures for successful drug delivery into the brain during infections.
    Matched MeSH terms: Pinocytosis
  5. Ochani RK, Batra S, Shaikh A, Asad A
    Infez Med, 2019 Jun 01;27(2):117-127.
    PMID: 31205033
    The Nipah virus was discovered twenty years ago, and there is considerable information available regarding the specificities surrounding this virus such as transmission, pathogenesis and genome. Belonging to the Henipavirus genus, this virus can cause fever, encephalitis and respiratory disorders. The first cases were reported in Malaysia and Singapore in 1998, when affected individuals presented with severe febrile encephalitis. Since then, much has been identified about this virus. These single-stranded RNA viruses gain entry into target cells via a process known as macropinocytosis. The viral genome is released into the cell cytoplasm via a cascade of processes that involves conformational changes in G and F proteins which allow for attachment of the viral membrane to the cell membrane. In addition to this, the natural reservoirs of this virus have been identified to be fruit bats from the genus Pteropus. Five of the 14 species of bats in Malaysia have been identified as carriers, and this virus affects horses, cats, dogs, pigs and humans. Various mechanisms of transmission have been proposed such as contamination of date palm saps by bat feces and saliva, nosocomial and human-to-human transmissions. Physical contact was identified as the strongest risk factor for developing an infection in the 2004 Faridpur outbreak. Geographically, the virus seems to favor the Indian sub-continent, Indonesia, Southeast Asia, Pakistan, southern China, northern Australia and the Philippines, as demonstrated by the multiple outbreaks in 2001, 2004, 2007, 2012 in Bangladesh, India and Pakistan as well as the initial outbreaks in Malaysia and Singapore. Multiple routes of the viremic spread in the human body have been identified such as the central nervous system (CNS) and respiratory system, while virus levels in the body remain low, detection in the cerebrospinal fluid is comparatively high. The virus follows an incubation period of 4 days to 2 weeks which is followed by the development of symptoms. The primary clinical signs include fever, headache, vomiting and dizziness, while the characteristic symptoms consist of segmental myoclonus, tachycardia, areflexia, hypotonia, abnormal pupillary reflexes and hypertension. The serum neutralization test (SNT) is the gold standard of diagnosis followed by ELISA if SNT cannot be carried out. On the other hand, treatment is supportive since there a lack of effective pharmacological therapy and only one equine vaccine is currently licensed for use. Prevention of outbreaks seems to be a more viable approach until specific therapeutic strategies are devised.
    Matched MeSH terms: Pinocytosis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links