Displaying all 3 publications

Abstract:
Sort:
  1. Diosdado A, Simón F, Morchón R, González-Miguel J
    Parasit Vectors, 2020 Apr 20;13(1):203.
    PMID: 32312291 DOI: 10.1186/s13071-020-04067-5
    BACKGROUND: Ascaris roundworms are the parasitic nematodes responsible for causing human and porcine ascariasis. Whereas A. lumbricoides is the most common soil-transmitted helminth infecting humans in the world, A. suum causes important economic losses in the porcine industry. The latter has been proposed as a model for the study of A. lumbricoides since both species are closely related. The third larval stage of these parasites carries out an intriguing and complex hepatopulmonary route through the bloodstream of its hosts. This allows the interaction between larvae and the physiological mechanisms of the hosts circulatory system, such as the fibrinolytic system. Parasite migration has been widely linked to the activation of this system by pathogens that are able to bind plasminogen and enhance plasmin generation. Therefore, the aim of this study was to examine the interaction between the infective third larval stage of A. suum and the host fibrinolytic system as a model of the host-Ascaris spp. relationships.

    METHODS: Infective larvae were obtained after incubating and hatching fertile eggs of A. suum in order to extract their cuticle and excretory/secretory antigens. The ability of both extracts to bind and activate plasminogen, as well as promote plasmin generation were assayed by ELISA and western blot. The location of plasminogen binding on the larval surface was revealed by immunofluorescence. The plasminogen-binding proteins from both antigenic extracts were revealed by two-dimensional electrophoresis and plasminogen-ligand blotting, and identified by mass spectrometry.

    RESULTS: Cuticle and excretory/secretory antigens from infective larvae of A. suum were able to bind plasminogen and promote plasmin generation in the presence of plasminogen activators. Plasminogen binding was located on the larval surface. Twelve plasminogen-binding proteins were identified in both antigenic extracts.

    CONCLUSIONS: To the best of our knowledge, the present results showed for the first time, the pro-fibrinolytic potential of infective larvae of Ascaris spp., which suggests a novel parasite survival mechanism by facilitating the migration through host tissues.

    Matched MeSH terms: Plasminogen/metabolism
  2. Li S, Lu BP, Feng J, Zhou JJ, Xie ZZ, Liang C, et al.
    Trop Biomed, 2020 Dec 01;37(4):852-863.
    PMID: 33612738 DOI: 10.47665/tb.37.4.852
    Fructose-1,6-bisphosphate aldolase (FbA), a well characterized glycometabolism enzyme, has been found to participate in other important processes besides the classic catalysis. To understand the important functions of three fructose-1,6-bisphosphate aldolases from Clonorchis sinensis (CsFbAs, CsFbA-1/2/3) in host-parasite interplay, the open reading frames of CsFbAs were cloned into pET30a (+) vector and the resulting recombinant plasmids were transformed into Escherichia coli BL21 (DE3) for expression of the proteins. Purified recombinant CsFbAs proteins (rCsFbAs) were approximately 45.0 kDa on 12% SDS-PAGE and could be probed with each rat anti-rCsFbAs sera by western blotting analysis. ELISA and ligand blot overlay indicated that rCsFbAs of 45.0 kDa as well as native CsFbAs of 39.5 kDa from total worm extracts and excretory-secretory products of Clonorchis sinensis (CsESPs) could bind to human plasminogen, and the binding could be efficiently inhibited by lysine analog ε-aminocaproic acid. Our results suggested that as both the components of CsESPs and the plasminogen binding proteins, three CsFbAs might be involved in preventing the formation of the blood clot so that Clonorchis sinensis could acquire enough nutrients from host tissue for their successful survival and colonization in the host. Our work will provide us with new information about the biological function of three CsFbAs and their roles in hostparasite interplay.
    Matched MeSH terms: Plasminogen/metabolism*
  3. Mustaffa N, Ibrahim S, Abdullah WZ, Yusof Z
    Blood Coagul Fibrinolysis, 2011 Sep;22(6):512-20.
    PMID: 21537159 DOI: 10.1097/MBC.0b013e32834740ba
    Rosiglitazone is an oral hypoglycaemic agent of the thiazolidinedione group. This study aimed to assess changes in the diabetic prothrombotic state via plasminogen activity and changes in surrogate markers of atherosclerotic burden via ankle-brachial pressure index (ABPI) measurements after rosiglitazone was added to a pre-existing type 2 diabetes mellitus treatment regime. A nonblinded interventional study was designed. Fifty-nine patients were enrolled. Rosiglitazone-naïve patients were prescribed oral rosiglitazone 4 mg daily for 10 weeks. ABPI, plasminogen activity, glycosylated haemoglobin (HbA1c) and fasting lipid profile were measured pretreatment and post-treatment. Forty-eight patients completed the study. At the end of this study, mean plasminogen activity improvement was nearly 16% (P<0.05), mean ABPI improvement was 0.01 (P=0.439), mean HbA1c reduction was 0.51% (P<0.05), mean total cholesterol (TC) increase was 0.36 mmol/l (P<0.05), mean high-density lipoprotein cholesterol (HDL-C) increase was 0.15 mmol/l (P<0.05) and mean low-density lipoprotein cholesterol increased by 0.19 mmol/l (P=0.098). Rosiglitazone significantly improved plasminogen activity. There was also significant HbA1c reduction, and rise in both TC and HDL-C. Thus, rosiglitazone potentially improves the atherosclerotic burden and prothrombotic state. In future, more studies are needed to confirm the relationship between rosiglitazone, fibrinolytic system and atheromatous reduction in type 2 diabetes mellitus.
    Matched MeSH terms: Plasminogen/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links