Displaying all 5 publications

Abstract:
Sort:
  1. Chong TL, Matsufuji Y, Hassan MN
    Waste Manag, 2005;25(7):702-11.
    PMID: 16009304
    Most of the existing solid waste landfill sites in developing countries are practicing either open dumping or controlled dumping. Proper sanitary landfill concepts are not fully implemented due to technological and financial constraints. Implementation of a fully engineered sanitary landfill is necessary and a more economically feasible landfill design is crucial, particularly for developing countries. This study was carried out by focusing on the economics from the development of a new landfill site within a natural clay area with no cost of synthetic liner up to 10 years after its closure by using the Fukuoka method semi-aerobic landfill system. The findings of the study show that for the development of a 15-ha landfill site in Malaysia with an estimated volume of 2,000,000 m(3), the capital investment required was about US 1,312,895 dollars, or about US 0.84 dollars/tonne of waste. Assuming that the lifespan of the landfill is 20 years, the total cost of operation was about US 11,132,536 dollars or US 7.15 dollars/tonne of waste. The closure cost of the landfill was estimated to be US 1,385,526 dollars or US 0.89 dollars/tonne of waste. Therefore, the total cost required to dispose of a tonne of waste at the semi-aerobic landfill was estimated to be US 8.89 dollars. By considering an average tipping fee of about US 7.89 dollars/tonne of waste in Malaysia in the first year, and an annual increase of 3% to about US 13.84 dollars in year-20, the overall system recorded a positive revenue of US 1,734,749 dollars. This is important information for the effort of privatisation of landfill sites in Malaysia, as well as in other developing countries, in order to secure efficient and effective landfill development and management.
    Matched MeSH terms: Refuse Disposal/economics*
  2. Agamuthu P, Victor D
    Waste Manag Res, 2011 Sep;29(9):945-53.
    PMID: 21771873 DOI: 10.1177/0734242X11413332
    This paper seeks to examine the provisions for extended producer responsibility (EPR) within the Malaysian environmental and waste management policies and to determine its existing practice and future prospects in Malaysia. Malaysian waste generation has been increasing drastically where solid waste generation was estimated to increase from about 9.0 million tonnes in 2000 to about 10.9 million tonnes in 2010, to about 12.8 million tonnes in 2015 and finally to about 15.6 million tonnes in 2020. Malaysian e-waste was estimated to be about 652 909 tonnes in 2006 and was estimated to increase to about 706 000 tonnes in 2010 and finally to about 1.2 million tonnes in 2020. The projected increasing generation of both solid waste and scheduled wastes is expected to burden the country's resources and environment in managing these wastes in a sustainable manner. The concept of EPR is provided for in the Malaysia waste management system via the Environmental Quality Act 1974 and the Solid Waste and Public Cleansing Management Act 2007. However, these provisions in the policy are generic in nature without relevant regulations to enable its enforcement and as such the concept of EPR still remains on paper whereas the existing practice of EPR in Malaysia is limited through voluntary participation. In conclusion, policy trends of EPR in Malaysia seem to indicate that Malaysia may be embarking on the path towards EPR through the enactment of an EPR regulation.
    Matched MeSH terms: Refuse Disposal/economics*
  3. Agamuthu P, Fauziah SH
    Waste Manag Res, 2011 Jan;29(1):13-9.
    PMID: 20880936 DOI: 10.1177/0734242X10383080
    Malaysia disposes of 28,500 tonnes of municipal solid waste directly into landfills daily. This fact alone necessitates sustainable landfills to avoid adverse impacts on the population and the environment. The aim of the present study was to elucidate the issues and challenges faced by waste managers in moving towards sustainable landfilling in Malaysia. Various factors influence the management of a landfill. Among them is the human factor, which includes attitude and public participation. Although Malaysia's economy is developing rapidly, public concern and awareness are not evolving in parallel and therefore participation towards sustainable waste management through the 'reduce, reuse and recycle' approach (3Rs) is severely lacking. Consequently, landfill space is exhausted earlier than scheduled and this is no longer sustainable in terms of security of disposal. Challenges also arise from the lack of funding and the increase in the price of land. Thus, most waste managers normally aim for 'just enough' to comply with the regulations. Investment for the establishment of landfills generally is minimized since landfilling operations are considered uneconomical after closure. Institutional factors also hamper the practice of sustainable landfilling in the country where 3Rs is not mandatory and waste separation is totally absent. Although there are huge obstacles to be dealt with in moving towards sustainable landfilling in Malaysia, recent developments in waste management policy and regulations have indicated that positive changes are possible in the near future. Consequently, with the issues solved and challenges tackled, landfills in Malaysia can then be managed effectively in a more sustainable manner.
    Matched MeSH terms: Refuse Disposal/economics*
  4. Manaf LA, Samah MA, Zukki NI
    Waste Manag, 2009 Nov;29(11):2902-6.
    PMID: 19540745 DOI: 10.1016/j.wasman.2008.07.015
    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.
    Matched MeSH terms: Refuse Disposal/economics
  5. Agamuthu P, Hansen JA
    Waste Manag Res, 2007 Jun;25(3):241-6.
    PMID: 17612324
    This paper analyses some of the higher education and research capacity building experiences gained from 1998-2006 by Danish and Malaysian universities. The focus is on waste management, directly relating to both the environmental and socio-economic dimensions of sustainable development. Primary benefits, available as an educational legacy to universities, were obtained in terms of new and enhanced study curricula established on Problem-oriented Project-based Learning (POPBL) pedagogy, which strengthened academic environmental programmes at Malaysian and Danish universities. It involved more direct and mutually beneficial cooperation between academia and businesses in both countries. This kind of university reach-out is considered vital to development in all countries actively striving for global and sustainable development. Supplementary benefits were accrued for those involved directly in activities such as the 4 months of field studies, workshops, field courses and joint research projects. For students and academics, the gains have been new international dimensions in university curricula, enhanced career development and research collaboration based on realworld cases. It is suggested that the area of solid waste management offers opportunities for much needed capacity building in higher education and research, contributing to sustainable waste management on a global scale. Universities should be more actively involved in such educational, research and innovation programmes to make the necessary progress. ISWA can support capacity building activities by utilizing its resources--providing a lively platform for debate, securing dissemination of new knowledge, and furthering international networking beyond that which universities already do by themselves. A special challenge to ISWA may be to improve national and international professional networks between academia and business, thereby making education, research and innovation the key driving mechanisms in sustainable development in solid waste management.
    Matched MeSH terms: Refuse Disposal/economics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links