Displaying all 2 publications

Abstract:
Sort:
  1. Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, et al.
    Gene, 2018 Jul 30;665:155-166.
    PMID: 29684486 DOI: 10.1016/j.gene.2018.04.050
    Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms.
    Matched MeSH terms: Response Elements/physiology*
  2. Aliahmat NS, Abdul Sani NF, Wan Hasan WN, Makpol S, Wan Ngah WZ, Mohd Yusof YA
    J Nutrigenet Nutrigenomics, 2016;9(5-6):243-253.
    PMID: 28002828 DOI: 10.1159/000452407
    BACKGROUND/AIMS: The objective of this study was to elucidate the underlying antioxidant mechanism of aqueous extract of Piper betle (PB) in aging rats. The nuclear factor erythroid 2-related factor 2 (Nrf2)/ARE pathway involving phase II detoxifying and antioxidant enzymes plays an important role in the antioxidant system by reducing electrophiles and reactive oxygen species through induction of phase II enzymes and proteins.

    METHODS: Genes and proteins of phase II detoxifying antioxidant enzymes were analyzed by QuantiGenePlex 2.0 Assay and Western blot analysis.

    RESULTS: PB significantly induced genes and proteins of phase II and antioxidant enzymes, NAD(P)H quinone oxidoreductase 1, and catalase in aging mice (p < 0.05). The expression of these enzymes were stimulated via translocation of Nrf2 into the nucleus, indicating the involvement of ARE, a cis-acting motif located in the promoter region of nearly all phase II genes.

    CONCLUSIONS: PB was testified for the first time to induce cytoprotective genes through the Nrf2/ARE signaling pathway, thus unraveling the antioxidant mechanism of PB during the aging process.

    Matched MeSH terms: Antioxidant Response Elements/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links