Displaying all 2 publications

Abstract:
Sort:
  1. Rahman MA, Yusoff FM, Arshad A, Shamsudin MN, Amin SM
    ScientificWorldJournal, 2012;2012:938482.
    PMID: 23055824 DOI: 10.1100/2012/938482
    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10(-5) dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition.
    Matched MeSH terms: Sea Urchins/growth & development*
  2. Rahman MA, Uehara T, Arshad A, Yusoff FM, Shamsudin MN
    J Zhejiang Univ Sci B, 2012 Oct;13(10):797-810.
    PMID: 23024047
    Two reef margin species of tropical sea urchins, Echinometra sp. C (Ec) and Echinometra oblonga (Eo), occur sympatrically on Okinawa intertidal reefs in southern Japan. Hybridization between these species was examined through a series of cross-fertilization experiments. At limited sperm concentrations, where conspecific crosses reached near 100% fertilization, both heterospecific crosses showed high fertilization rates (81%-85%). The compatibility of the gametes demonstrated that if gamete recognition molecules are involved in fertilization of these species, they are not strongly species-specific. We found that conspecific crosses reached peak fertilization levels much faster than did heterospecific crosses, indicating the presence of a prezygotic barrier to hybridization in the gametes. Larval survival, metamorphosis, and juvenile and adult survival of hybrid groups were nearly identical to those of their parent species. Hybrids from crosses in both directions developed normally through larval stages to sexually mature adults, indicating that neither gametic incompatibility nor hybrid inviability appeared to maintain reproductive isolation between these species. In adults, Ec×Ec crosses gave the highest live weight, followed by Eo (ova)×Ec (sperm), Ec (ova)×Eo (sperm), and Eo×Eo. Other growth performance measures (viz., test size, Aristotle's lantern length, and gonad index) of hybrid groups and their parental siblings showed the same trends. The phenotypic color patterns of the hybrids were closer to the maternal coloration, whereas spine length, tube-foot and gonad spicule characteristics, pedicellaria valve length, and gamete sizes showed intermediate features. Adult F(1) hybrids were completely fertile and displayed high fertilization success in F(1) backcrosses, eliminating the likelihood that hybrid sterility is a postzygotic mechanism of reproductive isolation. Conversely, intensive surveys failed to find hybrid individuals in the field, suggesting the lack or rarity of natural hybridization. This strongly suggests that reproductive isolation is achieved by prezygotic isolating mechanism(s). Of these mechanisms, habitat segregation, gamete competition, differences in spawning times, gametic incompatibility or other genetic and non-genetic factors appear to be important in maintaining the integrity of these species.
    Matched MeSH terms: Sea Urchins/growth & development
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links