Displaying all 2 publications

Abstract:
Sort:
  1. Tang EL, Tan CH, Fung SY, Tan NH
    J Proteomics, 2016 10 04;148:44-56.
    PMID: 27418434 DOI: 10.1016/j.jprot.2016.07.006
    The venom of Malayan pit viper (Calloselasma rhodostoma) is highly toxic but also valuable in drug discovery. However, a comprehensive proteome of the venom that details its toxin composition and abundance is lacking. This study aimed to unravel the venom complexity through a multi-step venomic approach. At least 96 distinct proteins (29 basic, 67 acidic) in 11 families were identified from the venom. The venom consists of mainly snake venom metalloproteinases (SVMP, 41.17% of total venom proteins), within which the P-I (kistomin, 20.4%) and P-II (rhodostoxin, 19.8%) classes predominate. This is followed by C-type lectins (snaclec, 26.3%), snake venom serine protease (SVSP, 14.9%), L-amino acid oxidase (7.0%), phospholipase A2 (4.4%), cysteine-rich secretory protein (2.5%), and five minor toxins (nerve growth factor, neurotrophin, phospholipase B, 5' nucleotidase and phosphodiesterase, totaling 2.6%) not reported in the proteome hitherto. Importantly, all principal hemotoxins unveiled correlate with the syndrome: SVSP ancrod causes venom-induced consumptive coagulopathy, aggravated by thrombocytopenia caused by snaclec rhodocytin, a platelet aggregation inducer, while P-II rhodostoxin mediates hemorrhage, exacerbated by P-I kistomin and snaclec rhodocetin that inhibit platelet plug formation. These toxins exist in multiple isoforms and/or complex subunits, deserving further characterization for the development of an effective, polyspecific regional antivenom.

    BIOLOGICAL SIGNIFICANCE: Advents in proteomics and bioinformatics have vigorously propelled the scientific discoveries of toxins from various lineages of venomous snakes. The Malayan pit viper, Calloselasma rhodostoma, is a medically important species in Southeast Asia as its bite can cause envenomation, while the venom is also a source of bioactive compounds for drug discovery. Detailed profiling of the venom, however, is inadequate possibly due to the complex nature of the venom and technical limitation in separating the constituents into details. Integrating a multi-step fractionation method, this study successfully revealed a comprehensive and quantitative profile of the composition of the venom of this medically important venomous snake. The relative abundance of the various venom proteins is determined in a global profile, providing useful information for understanding the pathogenic roles of the different toxins in C. rhodostoma envenomation. Notably, the principal hemotoxins were identified in great details, including the variety of toxin subunits and isoforms. The findings indicate that these toxins are the principal targets for effective antivenom neutralization, and should be addressed in the production of a pan-regional polyspecific antivenom. In addition, minor toxin components not reported previously in the venom were also detected in this study, enriching the current toxin database for the venomous snakes.

    Matched MeSH terms: Serine Proteases/analysis
  2. Tan CH, Palasuberniam P, Tan KY
    Toxins (Basel), 2021 07 23;13(8).
    PMID: 34437385 DOI: 10.3390/toxins13080514
    Snakebite envenomation is a serious neglected tropical disease, and its management is often complicated by the diversity of snake venoms. In Asia, pit vipers of the Ovophis species complex are medically important venomous snakes whose venom properties have not been investigated in depth. This study characterized the venom proteomes of Ovophis convictus (West Malaysia), Ovophis tonkinensis (northern Vietnam, southern China), and Ovophis okinavensis (Okinawa, Japan) by applying liquid chromatography-tandem mass spectrometry, which detected a high abundance of snake venom serine proteases (SVSP, constituting 40-60% of total venom proteins), followed by phospholipases A2, snake venom metalloproteinases of mainly P-III class, L-amino acid oxidases, and toxins from other protein families which were less abundant. The venoms exhibited different procoagulant activities in human plasma, with potency decreasing from O. tonkinensis > O. okinavensis > O. convictus. The procoagulant nature of venom confirms that consumptive coagulopathy underlies the pathophysiology of Ovophis pit viper envenomation. The hetero-specific antivenoms Gloydius brevicaudus monovalent antivenom (GbMAV) and Trimeresurus albolabris monovalent antivenom (TaMAV) were immunoreactive toward the venoms, and cross-neutralized their procoagulant activities, albeit at variably limited efficacy. In the absence of species-specific antivenom, these hetero-specific antivenoms may be useful in treating coagulotoxic envenomation caused by the different snakes in their respective regions.
    Matched MeSH terms: Serine Proteases/analysis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links