Displaying all 5 publications

Abstract:
Sort:
  1. Ibitoye MO, Estigoni EH, Hamzaid NA, Wahab AK, Davis GM
    Sensors (Basel), 2014;14(7):12598-622.
    PMID: 25025551 DOI: 10.3390/s140712598
    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population.
    Matched MeSH terms: Spinal Cord Injuries/diagnosis
  2. Morse LR, Biering-Soerensen F, Carbone LD, Cervinka T, Cirnigliaro CM, Johnston TE, et al.
    J Clin Densitom, 2019 08 03;22(4):554-566.
    PMID: 31501005 DOI: 10.1016/j.jocd.2019.07.012
    Spinal cord injury (SCI) causes rapid osteoporosis that is most severe below the level of injury. More than half of those with motor complete SCI will experience an osteoporotic fracture at some point following their injury, with most fractures occurring at the distal femur and proximal tibia. These fractures have devastating consequences, including delayed union or nonunion, cellulitis, skin breakdown, lower extremity amputation, and premature death. Maintaining skeletal integrity and preventing fractures is imperative following SCI to fully benefit from future advances in paralysis cure research and robotic-exoskeletons, brain computer interfaces and other evolving technologies. Clinical care has been previously limited by the lack of consensus derived guidelines or standards regarding dual-energy X-ray absorptiometry-based diagnosis of osteoporosis, fracture risk prediction, or monitoring response to therapies. The International Society of Clinical Densitometry convened a task force to establish Official Positions for bone density assessment by dual-energy X-ray absorptiometry in individuals with SCI of traumatic or nontraumatic etiology. This task force conducted a series of systematic reviews to guide the development of evidence-based position statements that were reviewed by an expert panel at the 2019 Position Development Conference in Kuala Lumpur, Malaysia. The resulting the International Society of Clinical Densitometry Official Positions are intended to inform clinical care and guide the diagnosis of osteoporosis as well as fracture risk management of osteoporosis following SCI.
    Matched MeSH terms: Spinal Cord Injuries/diagnosis*
  3. Shuhart CR, Yeap SS, Anderson PA, Jankowski LG, Lewiecki EM, Morse LR, et al.
    J Clin Densitom, 2019 07 05;22(4):453-471.
    PMID: 31400968 DOI: 10.1016/j.jocd.2019.07.001
    To answer important questions in the fields of monitoring with densitometry, dual-energy X-ray absorptiometry machine cross-calibration, monitoring, spinal cord injury, periprosthetic and orthopedic bone health, transgender medicine, and pediatric bone health, the International Society for Clinical Densitometry (ISCD) held a Position Development Conference from March 20 to 23, 2019. Potential topics requiring guidance were solicited from ISCD members in 2017. Following that, a steering committee selected, prioritized, and grouped topics into Task Forces. Chairs for each Task Force were appointed and the members were co-opted from suggestions by the Steering Committee and Task Force Chairs. The Task Forces developed key questions, performed literature searches, and came up with proposed initial positions with substantiating draft publications, with support from the Steering Committee. An invited Panel of Experts first performed a review of draft positions using a modified RAND Appropriateness Method with voting for appropriateness. Draft positions deemed appropriate were further edited and presented at the Position Development Conference meeting in an open forum. A second round of voting occurred after discussions to approve or reject the positions. Finally, a face-to-face closed session with experts and Task Force Chairs, and subsequent electronic follow-up resulted in 34 Official Positions of the ISCD approved by the ISCD Board on May 28, 2019. The Official Positions and the supporting evidence were submitted for publication on July 1, 2019. This paper provides a summary of the all the ISCD Adult and Pediatric Official Positions, with the new 2019 positions highlighted in bold.
    Matched MeSH terms: Spinal Cord Injuries/diagnosis*
  4. Mat Rosly M, Mat Rosly H, Hasnan N, Davis GM, Husain R
    Eur J Phys Rehabil Med, 2017 Aug;53(4):527-534.
    PMID: 28092144 DOI: 10.23736/S1973-9087.17.04456-2
    BACKGROUND: Current strategies for increased physical activity and exercise in individuals with spinal cord injury (SCI) face many challenges with regards to maintaining their continuity of participation. Barriers cited often include problems with accessing facilities, mundane, monotonous or boring exercises and expensive equipment that is often not adapted for wheelchair users.

    AIM: To compare the physiological responses and user preferences between conventional heavy-bag boxing against a novel form of video game boxing, known as exergaming boxing.

    DESIGN: Cross-sectional study.

    SETTING: Exercise laboratory setting in a university medical center.

    POPULATION: Seventeen participants with SCI were recruited, of which sixteen were male and only one female. Their mean age was 35.6±10.2 years.

    METHODS: All of them performed a 15-minute physical exercise session of exergaming and heavy-bag boxing in a sitting position. The study assessed physiological responses in terms of oxygen consumption, metabolic equivalent (MET) and energy expenditure between exergaming and heavy-bag boxing derived from open-circuit spirometry. Participants also rated their perceived exertion using Borg's category-ratio ratings of perceived exertion.

    RESULTS: Both exergaming (MET: 4.3±1.0) and heavy-bag boxing (MET: 4.4±1.0) achieved moderate exercise intensities in these participants with SCI. Paired t-test revealed no significant differences (P>0.05, Cohen's d: 0.02-0.49) in the physiological or perceived exertional responses between the two modalities of boxing. Post session user survey reported all the participants found exergaming boxing more enjoyable.

    CONCLUSIONS: Exergaming boxing, was able to produce equipotent physiological responses as conventional heavy-bag boxing. The intensity of both exercise modalities achieved recommended intensities for health and fitness benefits.

    CLINICAL REHABILITATION IMPACT: Exergaming boxing have the potential to provide an enjoyable, self-competitive environment for moderate-vigorous exercise even at the comfort of their homes.

    Matched MeSH terms: Spinal Cord Injuries/diagnosis
  5. Ibrahim A, Lee KY, Kanoo LL, Tan CH, Hamid MA, Hamedon NM, et al.
    Spine (Phila Pa 1976), 2013 Mar 1;38(5):419-24.
    PMID: 22914700 DOI: 10.1097/BRS.0b013e31826ef594
    Cross-sectional study.
    Matched MeSH terms: Spinal Cord Injuries/diagnosis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links