Displaying all 2 publications

Abstract:
Sort:
  1. Othman R, Nuraziyan A
    J Plant Physiol, 2010 Jan 15;167(2):131-7.
    PMID: 19729222 DOI: 10.1016/j.jplph.2009.07.015
    Subtilisin-like serine proteases (EC 3.4.21) consist of a widespread family of enzymes that is involved in various processes including in plants. The full-length cDNA (CpSUB1) and the corresponding genomic DNA for papaya subtilase have been obtained using rapid amplification of cDNA ends (RACEs) and PCR primer walking techniques, respectively. The cDNA clone contains an open reading frame of 2316bp encoding 772 amino acids with a calculated molecular mass of 82.6kDa and an isoelectric point (pI) of 8.97. The CpSUB1 gene is composed of nine exons and eight introns. The amino acid sequence encoded by CpSUB1 shared high identity (>60%) with the amino acid sequence of other plant subtilisin-like proteases. Sequence analysis of CpSUB1 revealed the presence of a possible signal peptide (25 amino acid residues) and an NH(2)-terminal prosequence (88 amino acid residues). In addition, papaya subtilase possesses the characteristic subtilisin catalytic triad amino acids namely Asp, His and Ser, together with the substrate-binding site, Asn. DNA hybridization analysis showed that subtilase gene exists as a single copy in the papaya genome. RNA hybridization analyses showed that expression of the subtilase transcripts was only detected in mesocarp but not in non-fruit tissues. Gene expression in fruit tissues reached the highest level during the ripening stage at which the fruits undergo dramatic softening process. Subsequently, pro-subtilase ( approximately 80kDa) was expressed as recombinant pro-enzyme ( approximately 97kDa), which was used to generate antiserum against papaya subtilase, anti-sub. Protein gel blot analysis using anti-sub towards total protein extracted from all ripening stages revealed that a protein with a molecular mass of approximately 70kDa reacted with the antiserum. Hence both RNA hybridization and protein gel blot analyses confirmed the presence of subtilase during papaya fruit ripening, pointing to its possible involvement in this important process.
    Matched MeSH terms: Subtilisins/genetics
  2. Muhammed NS, Hussin N, Lim AS, Jonet MA, Mohamad SE, Jamaluddin H
    Protein J, 2021 06;40(3):419-435.
    PMID: 33870461 DOI: 10.1007/s10930-021-09986-5
    Acinetobacter baumannii is a ubiquitous bacteria that is increasingly becoming a formidable nosocomial pathogen. Due to its clinical relevance, studies on the bacteria's secretory molecules especially extracellular proteases are of interest primarily in relation to the enzyme's role in virulence. Besides, favorable properties that extracellular proteases possess may be exploited for commercial use thus there is a need to investigate extracellular proteases from Acinetobacter baumannii to gain insights into their catalytic properties. In this study, an extracellular subtilisin-like serine protease from Acinetobacter baumannii designated as SPSFQ that was isolated from fermented food was recombinantly expressed and characterized. The mature catalytically active form of SPSFQ shared a high percentage sequence identity of 99% to extracellular proteases from clinical isolates of Acinetobacter baumannii and Klebsiella pneumoniae as well as a moderately high percentage identity to other bacterial proteases with known keratinolytic and collagenolytic activity. The homology model of mature SPSFQ revealed its structure is composed of 10 β-strands, 8 α-helices, and connecting loops resembling a typical architecture of subtilisin-like α/β motif. SPSFQ is catalytically active at an optimum temperature of 40 °C and pH 9. Its activity is stimulated in the presence of Ca2+ and severely inhibited in the presence of PMSF. SPSFQ also displayed the ability to degrade several tissue-associated protein substrates such as keratin, collagen, and fibrin. Accordingly, our study shed light on the catalytic properties of a previously uncharacterized extracellular serine protease from Acinetobacter baumannii that warrants further investigations into its potential role as a virulence factor in pathogenicity and commercial applications.
    Matched MeSH terms: Subtilisins/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links