It is apparent that whilst many reports are available regarding platelet-rich-plasma (PRP), the larger majority of these have been mainly focussed on autologous sources, and for good reason. Issues relating to allogenic source have been consciously avoided owing to concerns of cross infectivity and immune rejection. However, this topic today is now revisited and is of interest since progress over the year has demonstrated its safety, efficacy, and its abundance of supply. The present systematic review was thus conducted to elucidate advances made in this area, with the aim to provide a wider and deeper understanding of studies relevant to the application of allogenic PRP in cartilage repair. Literature search was conducted systematically using Medline, ProQuest, Web of Science, Cochrane Central Register of Controlled Trials, and snowballing searching strategy to identify relevant studies using topic-specific keywords in various combinations including "allogenic, platelet, rich, plasma" OR "allogeneic, platelet, rich, plasma" OR "allogenic platelet-rich plasma" OR "allogeneic platelet-rich plasma" OR "allogenic platelet rich plasma" OR "allogeneic platelet rich plasma" AND cartilage OR chondrocytes OR synoviocytes OR stem cells. Studies that used allogenic PRP in an attempt to facilitate cartilage repair were included. The risk of bias was assessed by the SYRCLE's checklist. Of 206 studies identified, 12 were found eligible. Only those studies that are clearly related and specific to allogenic PRP were included. Of these, nine investigated the efficacy of allogenic PRP in animal models, while three articles employed an in vitro model. Allogenic PRP promotes cell proliferation, cartilage matrix production, and anti-inflammatory effects in vitro. The in vivo studies reported histological evidence of significant acceleration of cartilage repair in treated animals. Despite several conflicting findings, all studies agreed that allogenic PRP is safe and potentially efficacious for cartilage repair, with the advantages of allogenic sources apparent.
Bone allografts donated by other individuals offer a viable alternative to autograft. Risks of disease transmission are overcome by sterilizing the bone; unfortunately sterilization methods generally affect bone functional properties including osteogenic potential and biomechanical integrity. This study aimed to determine any enhancement effect when gamma sterilised allografts was impregnated with autologous bone marrow in improving the rate and quality of integration in metaphyseal-tibial defects of rabbits. Almost all subjects showed 50% of the defect being covered by new bones by the third week and smaller residual defect size in the treated group at the fifth week. Hounsfield units at the defect site showed increasing healing in all samples, with the treated group having an apparent advantage although insignificant (p > 0.05). In the histopathological score evaluating healing over cortical and cancellous bone at the fracture site showed only slight variations between the groups (p > 0.05). Therefore no enhanced healing by the autologous bone marrow was observed when added to the bone allografts in treating the unicortical defects.
A major factor limiting survival following extensive thermal injury is insufficient availability of donor sites to provide enough skin for the required grafting procedures. Limitation of autologous grafting promotes the usage of allograft skin substitutes to promote wound healing. Here, we investigated the wound healing potential of allograft single layered tissue engineered skin which comprises of either keratinocytes (SLTES-K) or fibroblast (SLTES-F) with fibrin as the delivery system. Results from gross and microscopic evaluation showed our single layered tissue engineered skin constructed with keratinocytes or fibroblast after gamma radiation with the dosage of 2Gy could serve as allograft for the treatment of skin loss.