Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Sabri MY, Zamri-Saad M, Mutalib AR, Israf DA, Muniandy N
    Vet Microbiol, 2000 Apr 04;73(1):13-23.
    PMID: 10731614
    The outer membrane proteins (OMP) were extracted from the P. haemolytica A2, A7 and A9 to determine their potential as immunogens and their capability for cross-protection. Sixty lambs of approximately 9 months old were divided into four main groups. Animals in Group 1 were vaccinated with 2ml vaccine containing 100microg/ml of the outer membrane proteins of P. haemolytica A2. Animals in Group 2 were similarly vaccinated with the OMPs of P. haemolytica A7 while Group 3 with OMPs of P. haemolytica A9. Animals in Group 4 were unvaccinated control. During the course of the study, serum was collected to evaluate the antibody levels toward each OMP. There appeared to be good immune responses. However, high antibody levels did not necessarily result in good protection of the animals, particularly against cross-infection with P. haemolytica A9 in animals vaccinated with the OMPs of P. haemolytica A2. It seemed that the antibody responses were more specific toward the homologous challenge but generally did not cross-protect against heterologous serotype challenge. However, the OMPs of P. haemolytica A7 produced good in vivo cross-protection and excellent correlations when good antibody responses against all serotypes led to successful reductions of the extent of lung lesions following homologous and heterologous challenge exposures. Thus, the OMPs of P. haemolytica A7 was effective in protecting animals against homologous and heterologous infection by live P. haemolytica A2, A7 and A9.
    Matched MeSH terms: Vaccination/veterinary*
  2. Chandrasekaran S, Kennett L, Yeap PC, Muniandy N, Rani B, Mukkur TK
    Vet Microbiol, 1994 Aug 15;41(4):303-9.
    PMID: 7801530
    The relationship between the standard passive mouse protection test or serum antibody titres measured by indirect haemagglutination or enzyme-linked immunosorbent assays and active protection in buffaloes immunized with different types of haemorrhagic septicaemia bacterins was investigated. Groups of 2-3 buffaloes were immunized with the bacterins currently in use in Asia, viz., broth bacterin (BB), alum precipitated vaccine (APV) and oil adjuvant vaccine (OAV) either subcutaneously (BB, APV) or intramuscularly (OAV) and challenged subcutaneously with virulent organisms at different periods post-immunization. Although the passive mouse protection and indirect haemagglutination tests carried out with the pre-challenge sera from vaccinated buffaloes revealed no relationship with active protection in buffaloes, a relationship was observed between the ELISA antibody titres and protection. In contrast, a dose-response relationship was observed between the homologous active and passive mouse protection test.
    Matched MeSH terms: Vaccination/veterinary
  3. Andrišić M, Žarković I, Šandor K, Vujnović A, Perak Junaković E, Bendelja K, et al.
    Vet Immunol Immunopathol, 2022 Jan;243:110365.
    PMID: 34920287 DOI: 10.1016/j.vetimm.2021.110365
    Aujeszky's disease (AD) is a viral infectious disease caused by Suid herpesvirus 1 (SuHV-1). Vaccination and eradication of AD in domestic pigs is possible using marker vaccines with attenuated or inactivated SuHV-1, or subunit vaccines. However, vaccines with attenuated SuHV-1 have shown to be more potent in inducing strong cell-mediated immune response. The studies have shown that Parapoxvirus ovis, as well as Propionibacterium granulosum with lipopolysacharides (LPS) of Escherichia coli have pronounced immunomodulatory effects and that in combination with the vaccines can induce stronger humoral and cellular immune responses than use of vaccines alone. In our study distribution of peripheral blood T cell subpopulations was analysed after administration of vaccine alone (attenuated SuHV-1), immunostimulators (inactivated Parapoxvirus ovis or combination of an inactivated P. granulosum and detoxified LPS of E. coli) and combinations of vaccine with each immunostimulator to the 12-week old piglets. Throughout the study no significant changes were found in the proportions of γδ and most αβ T cell subpopulations analysed. However, on the seventh day of the study combination of an inactivated P. granulosum and LPS of E. coli with vaccine induced transient but significant increase of the proportions of CD4+CD8α+ and CD4-CD8α+ αβ T cells, that have been strongly associated with early protection of SuHV-1 infected pigs. Our findings indicate that combination of inactivated P. granulosum and detoxified E. coli LPS could be used for enhancement of a cellular immune response induced by vaccines against AD.
    Matched MeSH terms: Vaccination/veterinary
  4. Broder CC, Weir DL, Reid PA
    Vaccine, 2016 06 24;34(30):3525-34.
    PMID: 27154393 DOI: 10.1016/j.vaccine.2016.03.075
    Hendra virus (HeV) and Nipah virus (NiV) are zoonotic viruses that emerged in the mid to late 1990s causing disease outbreaks in livestock and people. HeV appeared in Queensland, Australia in 1994 causing a severe respiratory disease in horses along with a human case fatality. NiV emerged a few years later in Malaysia and Singapore in 1998-1999 causing a large outbreak of encephalitis with high mortality in people and also respiratory disease in pigs which served as amplifying hosts. The key pathological elements of HeV and NiV infection in several species of mammals, and also in people, are a severe systemic and often fatal neurologic and/or respiratory disease. In people, both HeV and NiV are also capable of causing relapsed encephalitis following recovery from an acute infection. The known reservoir hosts of HeV and NiV are several species of pteropid fruit bats. Spillovers of HeV into horses continue to occur in Australia and NiV has caused outbreaks in people in Bangladesh and India nearly annually since 2001, making HeV and NiV important transboundary biological threats. NiV in particular possesses several features that underscore its potential as a pandemic threat, including its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals, along with a capacity of limited human-to-human transmission. Several HeV and NiV animal challenge models have been developed which have facilitated an understanding of pathogenesis and allowed for the successful development of both active and passive immunization countermeasures.
    Matched MeSH terms: Vaccination/veterinary*
  5. Okur-Gumusova S, Tamer C, Ozan E, Cavunt A, Kadi H, Muftuoglu B, et al.
    Trop Biomed, 2020 Mar 01;37(1):165-173.
    PMID: 33612727
    This study was conducted in Samsun Province of Turkey to investigate the serological status of domesticated water buffaloes for both Crimean-Congo Hemorrhagic Fever (CCHF) and Lumpy Skin Disease (LSD). Serum was collected from a total of 272 water buffaloes from different age groups and both genders; of the total, 48.1% had been vaccinated against LSD with heterologous sheep-goat pox vaccine. The serum samples were individually assessed by using a commercial ID screen enzyme-linked immune-sorbent assay (ELISA) to detect neutralizing antibodies against both CCHF virus and LSD virus. All 272 buffaloes were negative for antibodies against the CCHF virus. All the unvaccinated buffaloes (141) were seronegative for LSD virus but of the 131 vaccinated buffaloes, 10 (7.6%) were seropositive for the LSD virus. In addition, 8.6% of vaccinated animals age >1 year old were seropositive for LSD, whereas the seropositivity was 5.1% for the animals age <= 1 year old. There was no significant difference for seropositivity between male and female animals in the >1 year old or <= 1 year old age groups. When seroprevalances for LSD in the tested water buffaloes are evaluated by gender, there was a significant difference between females (8.6%) and males (0%) in the <1 year old water buffaloes (X2=20.24; P<0.001). Separately, the results of this study indicate that Bafra district water buffaloes are not infected by CCHFV and LSDV and some of the buffaloes that vaccinated with LSDV did not develop sufficient antibodies to protect them after they were vaccinated for the LSD virus. Furthermore, the authors of this study conclude that both the commercially produced vaccine that is currently administered and the vaccination strategy have to be urgently evaluated by the veterinary authorities in Turkey. This is essential in order to combat the spread of LSD virus infection with an effective vaccine and a comprehensive management strategy across Turkey.
    Matched MeSH terms: Vaccination/veterinary
  6. Mohd Yasin IS, Mohd Yusoff S, Mohd ZS, Abd Wahid Mohd E
    Trop Anim Health Prod, 2011 Jan;43(1):179-87.
    PMID: 20697957 DOI: 10.1007/s11250-010-9672-5
    This study was carried out to determine the antibody responses and protective capacity of an inactivated recombinant vaccine expressing the fimbrial protein of Pasteurella multocida B:2 following intranasal vaccination against hemorrhagic septicemia in goats. Goats were vaccinated intranasal with 10(6) CFU/mL of the recombinant vaccine (vaccinated group) and 10(6) CFU/mL of pET32/LIC vector without fimbrial protein (control group). All three groups were kept separated before all goats in the three groups were challenged with 10(9) CFU/mL of live pathogenic P. multocida B:2. During the course of study, both serum and lung lavage fluid were collected to evaluate the antibody levels via enzyme-linked immunosorbent assay. It was found that goats immunized with the inactivated recombinant vaccine developed a strong and significantly (p 
    Matched MeSH terms: Vaccination/veterinary*
  7. Kuiek AM, Ooi PT, Yong CK, Ng CF
    Trop Anim Health Prod, 2015 Oct;47(7):1337-42.
    PMID: 26070293 DOI: 10.1007/s11250-015-0868-6
    Porcine reproductive and respiratory syndrome (PRRS) is a disease that is both highly contagious and of great economic importance in Malaysia. Therefore, reliable and improved diagnostic methods are needed to facilitate disease surveillance. This study compared PRRSV antibody responses in oral fluid versus serum samples following PRRS modified live (MLV) vaccination using commercial antibody ELISA kits (IDEXX Laboratories, Inc.). The study involved two pig farms located in Perak and Selangor, Malaysia. Both farms were vaccinated with PRRS MLV 1 month prior to sample collection. Thirty-five animals were used as subjects in each farm. These 35 animals were divided into 7 different categories: gilts, young sows, old sows, and four weaner groups. Oral fluid and serum samples were collected from these animals individually. In addition, pen oral fluid samples were collected from weaner groups. The oral fluid and serum samples were tested with IDEXX PRRS Oral Fluid Antibody Test Kit and IDEXX PRRS X3 Antibody Test Kit, respectively. The results were based on sample to positive ratio (S/P ratio of the samples). Results revealed a significant and positive correlation between serum and oral fluid samples for both farm A (p = 0.0001, r = 0.681) and farm B (p = 0.0001, r = 0.601). In general, oral fluids provided higher S/P results than serum, but the patterns of response were highly similar, especially for the sow groups. Thus, the use of oral fluids in endemic farms is effective and economical, particularly for large herds. In conclusion, the authors strongly recommend the use of oral fluids for PRRS monitoring in endemic farms.
    Matched MeSH terms: Vaccination/veterinary*
  8. Jesse FFA, Chung ELT, Abba Y, Muniandy KV, Tan AHAR, Maslamany D, et al.
    Trop Anim Health Prod, 2019 Feb;51(2):289-295.
    PMID: 30088124 DOI: 10.1007/s11250-018-1683-7
    Pneumonic pasteurellosis is an economically important infectious disease in the small ruminant industry which causes sudden death and loss for farmers. Nonetheless, this disease is still a common sight in sheep and goats in Malaysia, probably due to the unpopular usage of pasteurellosis vaccine or inappropriate vaccination practices. The aim of this study was designed to classify the severity of pneumonia via the establishment of auscultation scoring method and to quantify the acute phase proteins and heat shock proteins responses from vaccinated and non-vaccinated goats. Goat farms, consist of vaccinated and non-vaccinated farms, were selected in this study: where 15 clinically normal healthy goats and 9 pneumonic goats were selected from vaccinated farms whereas 15 clinically normal healthy goats and 31 pneumonic goats from non-vaccinated farms were selected for this study. Crackle lung sounds were not detected in both vaccinated and non-vaccinated normal goats. However, vaccinated pneumonic goats showed mild crackle lung sound while non-vaccinated pneumonic goats exhibited moderate crackle lung sound. There were significant increases (p 
    Matched MeSH terms: Vaccination/veterinary*
  9. Hambali IU, Abdullah FFJB, Bhutto KR, Mohd Azmi ML, Wahid AH, Zakaria Z, et al.
    Trop Anim Health Prod, 2019 May;51(4):781-789.
    PMID: 30449009 DOI: 10.1007/s11250-018-1755-8
    Mastitis is the inflammation of the mammary gland due to microbial infiltration causing a reduced mammary function. This study aims at developing a vaccine using Malaysian local isolate of Staphylococcus aureus and evaluating serum amyloid A, Interleukin-10, IgM and IgG responses periodically. Four bacterin concentrations (106, 107, 108 and 109 cfu/ml of the local isolate of S. aureus) were adjuvanted with aluminium potassium sulphate. Thirty cows grouped into 4 treatment groups (G-) were vaccinated (2 ml) intramuscularly, with a fifth G-A as control. The mean concentration (MC) of serum amyloid A (SAA) was significantly different (sig-d) (p ˂ 0.05) in G-D at 0 h post vaccination (PV), 3 h PV, 24 h PV, weeks 1, 2, 3 and 4 PV (6-, 15-, 5-, 12-, 11-, 4- and 11-fold increased (FI) respectively). The MC of serum amyloid A was also sig-d in G-E at 0 h PV, weeks 1, 2 and 4 PV (3, 8, 5 and 8 FI respectively). The MC of IL-10 was sig-d in G-D and C at 3 h PV and week 2 PV (5 and 2 FI respectively). The IgM MC was sig-d in G-B and C at 3 h PV (5 and 6 FI respectively), at 24 h PV (5 and 9 FI respectively), at week 3 PV(2 and 2 FI respectively) and week 4 PV (3 and 4 FI respectively). The MC of IgG was sig-d in G-E at 0 h, 3 h and week 3 PV(5, 6 and 2 FI respectively) and in G-D at weeks 1-4 (3, 3, 3 and 5 FI respectively). In conclusion, elevated levels of SAA, IgG and IL-10 in G-D(108) informed our choice of best dosage which can be used to evoke immunity in cows.
    Matched MeSH terms: Vaccination/veterinary
  10. Toh X, Soh ML, Ng MK, Yap SC, Harith N, Fernandez CJ, et al.
    Transbound Emerg Dis, 2019 Sep;66(5):1884-1893.
    PMID: 31059176 DOI: 10.1111/tbed.13218
    Equine influenza is a major cause of respiratory infections in horses and can spread rapidly despite the availability of commercial vaccines. In this study, we carried out molecular characterization of Equine Influenza Virus (EIV) isolated from the Malaysian outbreak in 2015 by sequencing of the HA and NA gene segments using Sanger sequencing. The nucleotide and amino acid sequences of HA and NA were compared with representative Florida clade 1 and clade 2 strains using phylogenetic analysis. The Florida clade 1 viruses identified in this outbreak revealed numerous amino acid substitutions in the HA protein as compared to the current OIE vaccine strain recommendations and representative strains of circulating Florida sub-lineage clade 1 and clade 2. Differences in HA included amino acids located within antigenic sites which could lead to reduced immune recognition of the outbreak strain and alter the effectiveness of vaccination against the outbreak strain. Detailed surveillance and genetic information sharing could allow genetic drift of equine influenza viruses to be monitored more effectively on a global basis and aid in refinement of vaccine strain selection for EIV.
    Matched MeSH terms: Vaccination/veterinary*
  11. Lau SF, Wong JY, Khor KH, Roslan MA, Abdul Rahman MS, Bejo SK, et al.
    Top Companion Anim Med, 2017 Dec;32(4):121-125.
    PMID: 29525230 DOI: 10.1053/j.tcam.2017.12.001
    Working dogs are canine animals that have been trained to assist human beings in carrying out various tasks. They help in guarding property, performing rescues, assisting the visually impaired or physically handicapped, searching for drugs, explosives, and others. Leptospirosis is one of the most widespread zoonotic diseases in the world and a commonly occurring disease of the tropics and subtropics. In Malaysia, all working dogs are normally vaccinated with serovars, Pomona, Icterohaemorrhagiae, Canicola, and Grippotyphosa based on protocols recommended from other countries. The duration of immunity in vaccinated dogs for Leptospira can last up to 13 months; however, there is no full crossprotection between the different serovars. Five representative canine units from different government agencies in Malaysia (n = 96 dogs) were recruited in this study. For detection, the microscopic agglutination test was performed by incubating the serum from dogs with various serovars of leptospires, namely, Icterohaemorrhagiae, Canicola, Pomona, Grippotyphosa, Australis, Bataviae, Javanica, Tarassovi, Hebdomadis, Lai, and Pyrogenes. The plasma obtained was used for polymerase chain reaction (PCR) analysis, for the detection of 16S rRNA, and lipL 32 genes of Leptospira. Out of the 96 dogs sampled, only 3 dogs were positive toward serovars, Australis, Bataviae, and Javanica, based on the cutoff point at 1:80. The seroprevalence of canine leptospirosis in this population was 3.1% (n = 3/96). However, all 96 blood samples of working dogs tested negative for both pathogenic and nonpathogenic Leptospira genes. The results revealed that, by vaccination alone, working dogs were not fully protected against leptospirosis and could pose a risk to dog handlers. A preventative and control protocol for leptospirosis is warranted, and its implementation should be monitored and improved accordingly from time to time, in order to maintain a healthy condition in both working dogs and their handlers.
    Matched MeSH terms: Vaccination/veterinary
  12. Effendy AW, Zamri-Saad M, Puspa R, Rosiah S
    Vet Rec, 1998 Apr 18;142(16):428-31.
    PMID: 9595632
    A trial was conducted to compare the efficacy of intranasal vaccination in protecting goats against pneumonic pasteurellosis with intramuscular vaccination using an oil adjuvant vaccine, and a combination of the two methods. Forty goats were divided into four equal groups. Group 1 was vaccinated twice intranasally with formalin-killed Pasteurella haemolytica A2, group 2 was vaccinated twice intramuscularly with an oil adjuvant vaccine containing P haemolytica A7, and group 3 was initially vaccinated intranasally with the formalin-killed P haemolytica A2 followed by intramuscular vaccination with the oil adjuvant vaccine. In each group the two vaccinations were carried out four weeks apart. Group 4 was the unvaccinated control group. All goats were challenged intratracheally with 4 ml of an inoculum containing live P haemolytica A2 at a concentration of 1.3 x 10(7) colony forming units/ml two weeks after the last vaccination and were killed 14 days after the challenge. Although group 2 showed the highest clinical score following the challenge, deaths were observed only in group 3. Three goats in group 1 had pneumonic lung lesions, compared with six goats in group 2 and all the goats in groups 3 and 4. The lung lesions in group 1 were significantly (P < 0.05) less severe than in groups 3 and 4. Similarly, the lesions in group 2 were markedly less severe than in groups 3 and 4, although the differences were not significant. The difference between the extent of the lung lesions in the goats in groups 1 and 2 was not significant. Antibody against P haemolytica A2 in group 1 reached peak levels and was significantly (P < 0.01) higher than in the control group one week after the second vaccination, before declining.
    Matched MeSH terms: Vaccination/veterinary
  13. Zamri-Saad M, Sharif H, Basri K
    Vet Rec, 1989 Feb 18;124(7):171-2.
    PMID: 2922914
    Matched MeSH terms: Vaccination/veterinary*
  14. Ernawati R, Ibrahim AL
    Vet Rec, 1984 Oct 06;115(14):352-4.
    PMID: 6495601
    An experimental oil emulsion Newcastle disease vaccine was evaluated for its efficacy in broiler chickens. A group of chickens vaccinated at one day old with a live lentogenic Newcastle disease vaccine and subsequently revaccinated at three and eight weeks old with the experimental oil emulsion vaccine showed satisfactory haemagglutination inhibition antibody response which persisted for 18 weeks. Between 90 and 100 per cent of the vaccinated chickens were protected when challenged with the velogenic viscerotropic Newcastle disease virus. Although the vaccinated chickens were protected against clinical disease, virus could be isolated from a number of birds. By day 10 to 12 after challenge all the chickens were free from Newcastle disease infection.
    Matched MeSH terms: Vaccination/veterinary*
  15. Rafidah O, Zamri-Saad M, Shahirudin S, Nasip E
    Vet Rec, 2012 Aug 18;171(7):175.
    PMID: 22815208 DOI: 10.1136/vr.100403
    The efficacy of an intranasal haemorrhagic septicaemia vaccine containing live gdhA derivative Pasteurella multocida B:2 was tested in buffaloes in Sabah. Sixty buffaloes, kept grazing in the field with minimal human intervention were devided into three groups of 20 buffaloes per group. Buffaloes of group 1 were exposed intranasal to 5 ml vaccine containing 10(6) CFU/ml of live gdhA derivative P multocida B:2. Buffaloes of group 2 were not exposed to the vaccine but exposed to PBS and were allowed to commingle and graze in the same field as the buffaloes of group 1 while buffaloes of group 3 were similarly exposed to PBS and were grazing separately. Booster was on group 1, two weeks later. Twelve months after the first vaccination, three buffaloes from each group were brought into the experimental house and challenged subcutaneously with 10(9) CFU/ml of live wild-type P multocida B:2. All challenged buffaloes of groups 1 and 2 survived with only mild, transient signs while all control unvaccinated buffaloes developed severe signs of haemorrhagic septicaemia and were euthanased between 28 hours and 38 hours postchallenge with signs and lesions typical of haemorrhagic septicaemia. These data showed that the gdhA mutant strain, given intranasally as two doses two weeks apart, successfully induced systemic immunity in exposed buffaloes and also led to spread of vaccine strain to the in-contact animals, where it acted as an effective live vaccine to protect both exposed buffaloes and in-contact buffaloes against challenge with the virulent parent strain.
    Matched MeSH terms: Vaccination/veterinary*
  16. Ryan S, Bacon H, Endenburg N, Hazel S, Jouppi R, Lee N, et al.
    J Small Anim Pract, 2019 05;60(5):E1-E46.
    PMID: 31026337 DOI: 10.1111/jsap.12998
    Matched MeSH terms: Vaccination/veterinary*
  17. Chandrasekaran S, Hizat K, Saad Z, Johara MY, Yeap PC
    Br. Vet. J., 1991 Sep-Oct;147(5):437-43.
    PMID: 1959015
    The effectiveness of an oil adjuvant vaccine (OAV) incorporating locally isolated strains of Pasteurella haemolytica type 7 and Pasteurella multocida types A and D was compared with that of Carovax (Wellcome Laboratories) in imported cross-bred lambs. The criterion of efficacy was the ability of the vaccines to reduce the extent of pneumonic lesions in vaccinated as against unvaccinated control lambs. The OAV produced at this Institute significantly reduced the lung lesions at P less than 0.05 level compared with its control group when challenged with P. haemolytica alone. However, the vaccine was unsatisfactory against P. multocida or combined P. multocida P. haemolytica challenge. Carovax did not produce any significant reduction in the lung lesions caused by P. haemolytica and/or P. multocida.
    Matched MeSH terms: Vaccination/veterinary
  18. Gleeson LJ
    Rev. - Off. Int. Epizoot., 2002 Dec;21(3):465-75.
    PMID: 12530354
    The author presents reports of foot and mouth disease (FMD) submitted between 1996 and 2001 to the Office International des Epizooties (OIE: World organisation for animal health) Sub-Commission for FMD in South-East Asia. Of the ten countries in South-East Asia, FMD is endemic in seven (Cambodia, Laos, Malaysia, Myanmar, the Philippines, Thailand and Vietnam) and three are free of the disease (Brunei, Indonesia and Singapore). Part of the Philippines is also recognised internationally as being free of FMD. From 1996 to 2001, serotype O viruses caused outbreaks in all seven of the endemically infected countries. On the mainland, three different type O lineages have been recorded, namely: the South-East Asian (SEA) topotype, the pig-adapted or Cathay topotype and the pan-Asian topotype. Prior to 1999, one group of SEA topotype viruses occurred in the eastern part of the region and another group in the western part. However, in 1999, the pan-Asian lineage was introduced to the region and has become widespread. The Cathay topotype was reported from Vietnam in 1997 and is the only FMD virus currently endemic in the Philippines. Type Asia 1 has never been reported from the Philippines but was reported from all countries on the mainland except Vietnam between 1996 and 2001. Type A virus has not been reported from east of the Mekong River in the past six years and seems to be mainly confined to Thailand with occasional spillover into Malaysia. The distribution and movement of FMD viruses in the region is a reflection of the trade-driven movement of livestock. There is great disparity across the region in the strength and resources of the animal health services and this has a direct impact on FMD control. Regulatory environments are not well developed and enforcement of regulations can be ineffectual. The management of animal movement is quite variable across the region and much market-driven transboundary movement of livestock is unregulated. Formal quarantine approaches are generally not supported by traders or are not available. Vaccination is not used widely as a control tool because of the expense. However, it is applied by the Veterinary Services in Malaysia to control incursions of the disease and there is a mass vaccination programme for large ruminants in Thailand where the Government produces and distributes vaccine. Vaccination is also used by the commercial pig sector, particularly in the Philippines and Thailand.
    Matched MeSH terms: Vaccination/veterinary*
  19. Johnson RB, Dawkins HJ, Spencer TL, Saharee AA, Bahaman AR, Ramdani, et al.
    Res Vet Sci, 1989 Sep;47(2):277-9.
    PMID: 2508206
    ELISA and immunoblotting techniques were used to examine the humoral immune response to Pasteurella multocida, in bovine sera from Indonesia and Malaysia. Elevated levels of antibody to a crude lipopolysaccharide preparation were found in vaccinated animals. In addition to the response to lipopolysaccharide, antibodies from the vaccinated cattle strongly labelled five to six of the 40 protein bands in this organism.
    Matched MeSH terms: Vaccination/veterinary
  20. Aini I, Ibrahim AL, Spradbrow PB
    Res Vet Sci, 1990 Sep;49(2):216-9.
    PMID: 2236920
    The food pellet vaccine has been shown to be effective in trials conducted under laboratory and simulated field conditions. The village chickens vaccinated with the food pellet vaccine during the field trial were protected against virulent Newcastle disease virus. The efficacy of the food pellet vaccine in the field was evaluated by challenge trial in which 60 per cent protection was obtained, or by monitoring the incidence of Newcastle disease in vaccinated and unvaccinated birds. There was no report of Newcastle disease outbreaks in the vaccinated birds during the two-year period of the field trial. The ease in administering the food pellet vaccine makes it readily accepted by the farmers.
    Matched MeSH terms: Vaccination/veterinary*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links