Displaying all 3 publications

Abstract:
Sort:
  1. Salleh N, Mokhtar HM, Kassim NM, Giribabu N
    J. Membr. Biol., 2015 Dec;248(6):1097-105.
    PMID: 26198330 DOI: 10.1007/s00232-015-9823-8
    Testosterone has been reported to cause a decrease in uterine fluid volume in which this could involve the aquaporins (AQPs). This study aimed to investigate effect of testosterone on uterine AQP-1, 5, and 7 expressions in order to explain the reported reduction in uterine fluid volume under testosterone influence. Ovariectomized adult female rats received peanut oil, testosterone (1 mg/kg/day), estrogen (0.2 µg/kg/day), or combined estrogen plus testosterone for three consecutive days. Other groups received 3 days estrogen followed by 2 days either peanut oil or testosterone with or without flutamide or finasteride. A day after last injection, uteri were harvested, and the levels of AQP-1, 5, and 7 messenger RNA (mRNA) in uterine tissue homogenates were analyzed by real-time PCR (qPCR). Distributions of AQP-1, 5, and 7 proteins in uterus were observed by immunofluorescence. Levels of AQP-1 mRNA were elevated in rats receiving either estrogen or testosterone-only treatment; however, levels of AQP-5 and 7 mRNAs were elevated in rats receiving testosterone-only treatment. In rats pre-treated with estrogen, testosterone treatment resulted in higher AQP-1, 5, and 7 mRNA levels compared to vehicle treatment. Testosterone effects were antagonized by flutamide but not finasteride. Immunofluorescence study showed that AQP-1 was highly distributed in uterine lumenal epithelium following estrogen or testosterone-only treatment. However, AQP-5 and 7 distributions were high in uterine lumenal epithelium following testosterone-only treatment. Testosterone-induced up-regulation of AQP-1, 5, and 7 expressions in uterus could explain the observed reduction in uterine fluid volume as reported under this condition.
    Matched MeSH terms: Aquaporin 1/genetics
  2. Chinigarzadeh A, Muniandy S, Salleh N
    Environ Toxicol, 2017 Mar;32(3):832-844.
    PMID: 27235753 DOI: 10.1002/tox.22283
    We hypothesized that genistein can interfere with the regulation of uterine fluid volume, secretion rate and expression of aquaporin in the uterus by female sex-steroids, i.e., estrogen and progesterone. Therefore, the aims of this study were to investigate changes in these parameters in the presence of genistein and female sex-steroids.

    METHODS: Female Sprague-Dawley rats were ovariectomized and received 3-days estradiol-17β benzoate (E2) plus genistein (25, 50, or 100 mg kg(-1)  day(-1) ) or 3-days E2 followed by 3-days E2 plus progesterone with genistein (25, 50, or 100 mg kg(-1)  day(-1) ). A day after last treatment, uterine fluid secretion rate was determined by in vivo uterine perfusion with rats under anesthesia. Animals were sacrificed and uteri were harvested and subjected for histological analyses. Luminal/outer uterine circumference was determined and distribution of AQP-1, 2, 5, and 7 in endometrium was visualized by immunofluorescence. Expression of AQP-1, 2, 5, and 7 proteins and mRNAs were determined by Western blotting and Real-time PCR respectively.

    RESULTS: Combined treatment of E2 with high dose genistein (50 and 100 mg kg(-1)  day(-1) ) resulted in significant decrease in uterine fluid volume, secretion rate and expression of AQP-1, 2, 5, and 7 proteins and mRNAs in uterus (p 1)  day(-1) genistein was given with E2 or when genistein was given with E2 followed by E2 plus progesterone Conclusions: Decreased in uterine fluid volume, secretion rate and AQP-1, 2, 5, and 7 expression in the uterus by high dose genistein in the presence of E2 could potentially affect female fertility. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 832-844, 2017.

    Matched MeSH terms: Aquaporin 1/genetics
  3. Chinigarzadeh A, Muniandy S, Salleh N
    Steroids, 2016 11;115:47-55.
    PMID: 27521800 DOI: 10.1016/j.steroids.2016.08.007
    In this study, effects of estradiol, progesterone and genistein on uterine aquaporin (AQP)-1, 2, 5 and 7 expression were investigated in sex-steroid deficient state which could help to elucidate the mechanisms underlying uterine fluid volume changes that were reported under these hormone and hormone-like compound influences.

    METHODS: Uteri from ovariectomized, female Sprague-Dawley rats receiving seven days estradiol, progesterone or genistein (25, 50 and 100mg/kg/day) were harvested and levels of AQP-1, 2, 5 and 7 proteins and mRNAs were determined by Western blotting and Real-time PCR (qPCR) respectively. Distribution of these proteins in uterus was observed by immunohistochemistry.

    RESULTS: Genistein caused a dose-dependent increase in uterine AQP-1, 2, 5 and 7 protein and mRNA expression, however at the levels lower than following estradiol or progesterone stimulations. Effects of genistein were antagonized by estradiol receptor blocker, ICI 182780. Estradiol caused the highest AQP-2 protein and mRNA expression while progesterone caused the highest AQP-1, 5 and 7 protein and mRNA expression in uterus. AQP-1, 2, 5 and 7 protein were found to be distributed in the myometrium as well as in uterine luminal and glandular epithelia and endometrial blood vessels. In conclusion, the observed effects of estradiol, progesterone and genistein on uterine AQP-1, 2, 5 and 7 expression could help to explain the differences in the amount of fluid accumulated in the uterus under these different conditions.

    Matched MeSH terms: Aquaporin 1/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links