METHODS: Case report and review of literature.
RESULTS: Here, we report a 73-year-old woman with mild traumatic brain injury (TBI) presenting in cardiogenic shock. Takotsubo cardiomyopathy (TC) was diagnosed by repeated echocardiography. Cardiovascular support by inotropic agents led to hemodynamic stabilization after initiation of levosimendan. Cardiac function fully recovered within 21 days. We performed an in-depth literature review and identified 16 reported patients with TBI and TC. Clinical course and characteristics are discussed in the context of our patient.
CONCLUSION: Takotsubo cardiomyopathy is under-recognized after TBI and may negatively impact outcome if left untreated.
METHODS: The International Consensus Meeting on the Role of Decompressive Craniectomy in the Management of Traumatic Brain Injury took place in Cambridge, UK, on the 28th and 29th September 2017. The meeting was jointly organised by the World Federation of Neurosurgical Societies (WFNS), AO/Global Neuro and the NIHR Global Health Research Group on Neurotrauma. Discussions and voting were organised around six pre-specified themes: (1) primary DC for mass lesions, (2) secondary DC for intracranial hypertension, (3) peri-operative care, (4) surgical technique, (5) cranial reconstruction and (6) DC in low- and middle-income countries.
RESULTS: The invited participants discussed existing published evidence and proposed consensus statements. Statements required an agreement threshold of more than 70% by blinded voting for approval.
CONCLUSIONS: In this manuscript, we present the final consensus-based recommendations. We have also identified areas of uncertainty, where further research is required, including the role of primary DC, the role of hinge craniotomy and the optimal timing and material for skull reconstruction.
METHODS: In this cross-sectional study, 101 TBI patients were interviewed using the Structured Clinical Interview for DSM-IV Axis I Disorders to assess the rates of depressive and anxiety disorders after TBI. The association of socio-demographic and clinical factors with depressive and anxiety disorders were determined using Pearson's Chi-Square test.
RESULTS: A total of 25% of TBI patients (n = 25/101) were diagnosed with depressive disorders, of which 15% had major depressive disorder (n = 15/101) and 10% had minor depression (n = 10/101). Fourteen percent of TBI patients had anxiety disorders (n = 14/101), of which post-traumatic stress disorder (PTSD) was the commonest anxiety disorder (9%, n = 9/101). Seven percent of TBI patients (n = 7/101) had comorbid depressive and anxiety disorders. The only factor associated with depressive disorder was the duration of TBI (≥ 1 year) while the only factor associated with anxiety disorder was the mechanism of trauma (assault).
CONCLUSION: Major depressive disorder, minor depression and PTSD are common psychiatric complications of TBI. Clinicians should screen for depressive and anxiety disorders in TBI patients, particularly those with ≥1 year of injury and had sustained TBI from assault.
METHODS: This is a prospective substudy nested within the CRASH-3 trial, a randomised placebo-controlled trial of TXA (loading dose 1 g over 10 min, then 1 g infusion over 8 hours) in patients with isolated head injury. CRASH-3 trial patients were recruited between July 2012 and January 2019. Participants in the current substudy were a subset of trial patients enrolled at 10 hospitals in the UK and 4 in Malaysia, who had at least one CT head scan performed as part of the routine clinical practice within 28 days of randomisation. The primary outcome was the volume of intraparenchymal haemorrhage (ie, contusion) measured on a CT scan done after randomisation. Secondary outcomes were progressive intracranial haemorrhage (post-randomisation CT shows >25% of volume seen on pre-randomisation CT), new intracranial haemorrhage (any haemorrhage seen on post-randomisation CT but not on pre-randomisation CT), cerebral infarction (any infarction seen on any type of brain scan done post-randomisation, excluding infarction seen pre-randomisation) and intracranial haemorrhage volume (intraparenchymal + intraventricular + subdural + epidural) in those who underwent neurosurgical haemorrhage evacuation. We planned to conduct sensitivity analyses excluding patients who were severely injured at baseline. Dichotomous outcomes were analysed using relative risks (RR) or hazard ratios (HR), and continuous outcomes using a linear mixed model.
RESULTS: 1767 patients were included in this substudy. One-third of the patients had a baseline GCS (Glasgow Coma Score) of 3 (n=579) and 24% had unilateral or bilateral unreactive pupils. 46% of patients were scanned pre-randomisation and post-randomisation (n=812/1767), 19% were scanned only pre-randomisation (n=341/1767) and 35% were scanned only post-randomisation (n=614/1767). In all patients, there was no evidence that TXA prevents intraparenchymal haemorrhage expansion (estimate=1.09, 95% CI 0.81 to 1.45) or intracranial haemorrhage expansion in patients who underwent neurosurgical haemorrhage evacuation (n=363) (estimate=0.79, 95% CI 0.57 to 1.11). In patients scanned pre-randomisation and post-randomisation (n=812), there was no evidence that TXA reduces progressive haemorrhage (adjusted RR=0.91, 95% CI 0.74 to 1.13) and new haemorrhage (adjusted RR=0.85, 95% CI 0.72 to 1.01). When patients with unreactive pupils at baseline were excluded, there was evidence that TXA prevents new haemorrhage (adjusted RR=0.80, 95% CI 0.66 to 0.98). In patients scanned post-randomisation (n=1431), there was no evidence of an increase in infarction with TXA (adjusted HR=1.28, 95% CI 0.93 to 1.76). A larger proportion of patients without (vs with) a post-randomisation scan died from head injury (38% vs 19%: RR=1.97, 95% CI 1.66 to 2.34, p<0.0001).
CONCLUSION: TXA may prevent new haemorrhage in patients with reactive pupils at baseline. This is consistent with the results of the CRASH-3 trial which found that TXA reduced head injury death in patients with at least one reactive pupil at baseline. However, the large number of patients without post-randomisation scans and the possibility that the availability of scan data depends on whether a patient received TXA, challenges the validity of inferences made using routinely collected scan data. This study highlights the limitations of using routinely collected scan data to examine the effects of TBI treatments.
TRIAL REGISTRATION NUMBER: ISRCTN15088122.