Displaying all 3 publications

Abstract:
Sort:
  1. Su AT, Maeda S, Fukumoto J, Miyai N, Isahak M, Yoshioka A, et al.
    Ind Health, 2014;52(4):367-76.
    PMID: 24739764
    This study aimed to explore the clinical characteristics of hand arm vibration syndrome (HAVS) in a group of tree fellers in a tropical environment. We examined all tree fellers and selected control subjects in a logging camp of central Sarawak for vibration exposure and presence of HAVS symptoms utilizing vibrotactile perception threshold test (VPT) and cold water provocation test (CWP). None of the subjects reported white finger. The tree fellers reported significantly higher prevalence of finger coldness as compared to the control subjects (OR=10.32, 95%CI=1.21-87.94). A lower finger skin temperature, longer fingernail capillary return time and higher VPT were observed among the tree fellers as compared to the control subjects in all fingers (effect size >0.5). The VPT following CWP of the tree fellers was significantly higher (repeated measures ANOVA p=0.002, partial η(2)=0.196) than the control subject. The A (8) level was associated with finger tingling, numbness and dullness (effect size=0.983) and finger coldness (effect size=0.524) among the tree fellers. Finger coldness and finger tingling, numbness and dullness are important symptoms for HAVS in tropical environment that may indicate vascular and neurological damage due to hand-transmitted vibration exposure.
    Matched MeSH terms: Forestry/statistics & numerical data*
  2. Laurance SG, Laurance WF
    Nature, 2015 Nov 19;527(7578):305.
    PMID: 26581280 DOI: 10.1038/527305a
    Matched MeSH terms: Forestry/statistics & numerical data*
  3. Ewers RM, Boyle MJ, Gleave RA, Plowman NS, Benedick S, Bernard H, et al.
    Nat Commun, 2015 Apr 13;6:6836.
    PMID: 25865801 DOI: 10.1038/ncomms7836
    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.
    Matched MeSH terms: Forestry/statistics & numerical data*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links