Displaying all 7 publications

Abstract:
Sort:
  1. Lim LL, Chow E, Chan JCN
    Nat Rev Endocrinol, 2023 Mar;19(3):151-163.
    PMID: 36446898 DOI: 10.1038/s41574-022-00776-2
    Patients with type 2 diabetes mellitus (T2DM) can have multiple comorbidities and premature mortality due to atherosclerotic cardiovascular disease, hospitalization with heart failure and/or chronic kidney disease. Traditional drugs that lower glucose, such as metformin, or that treat high blood pressure and blood levels of lipids, such as renin-angiotensin-system inhibitors and statins, have organ-protective effects in patients with T2DM. Amongst patients with T2DM treated with these traditional drugs, randomized clinical trials have confirmed the additional cardiorenal benefits of sodium-glucose co-transporter 2 inhibitors (SGLT2i), glucagon-like peptide 1 receptor agonists (GLP1RA) and nonsteroidal mineralocorticoid receptor antagonists. The cardiorenal benefits of SGLT2i extended to patients with heart failure and/or chronic kidney disease without T2DM, whereas incretin-based therapy (such as GLP1RA) reduced cardiovascular events in patients with obesity and T2DM. However, considerable care gaps exist owing to insufficient detection, therapeutic inertia and poor adherence to these life-saving medications. In this Review, we discuss the complex interconnections of cardiorenal-metabolic diseases and strategies to implement evidence-based practice. Furthermore, we consider the need to conduct clinical trials combined with registers in specific patient segments to evaluate existing and emerging therapies to address unmet needs in T2DM.
    Matched MeSH terms: Glucagon-Like Peptide-1 Receptor/therapeutic use; Glucagon-Like Peptide-1 Receptor/agonists
  2. Hamad F, Elnour AA, Elamin A, Mohamed S, Yousif I, Don J, et al.
    Curr Diabetes Rev, 2021;17(3):280-292.
    PMID: 32867644 DOI: 10.2174/1573399816999200821164129
    BACKGROUND: The major cardiovascular outcome trials on glucagon-like peptide one-receptor agonists have examined its effect on hospitalization of subjects with heart failure; however, very limited trials have been conducted on subjects with reduced left ventricular ejection fraction (r- LVEF) as a primary outcome.

    OBJECTIVE: We have conducted a systematic review of two major (FIGHT and LIVE) placebo-controlled trials of liraglutide and its clinical effect on the ejection fraction of subjects with heart failure.

    METHODS: Medline data was retrieved for trials involving liraglutide from 2012 to 2020. The inclusion criteria for trials were: subjects with or without type 2 diabetes mellitus (T2DM), subjects with heart failure with rLVEF, major trials (phase II or III) on liraglutide, trials included liraglutide with defined efficacy primary outcome of patients with heart failure with rLVEF. The search was limited to the English language, whereby two trials [FIGHT and LIVE] had been included and two trials were excluded due to different primary outcomes. Participants (541) had been randomized for either liraglutide or placebo for 24 weeks.

    RESULTS: In the FIGHT trial the primary intention-to-treat, sensitivity, and diabetes subgroup analyses have shown no significant between-group difference in the global rank scores (mean rank of 146 in the liraglutide group versus 156 in the placebo group; Wilcoxon rank-sum P=.31), number of deaths, re-hospitalizations for heart failure, or the composite of death or change in NT-pro BNP level (P= .94). In the LIVE trial, the change in the left ventricular ejection fraction (LVEF) from baseline to week 24 was not significantly different between treatment groups. The overall discontinuation rate of liraglutide was high in the FIGHT trial (29%, 86) as compared to that in the LIVE trial (11.6%, 28).

    CONCLUSION: FIGHT and LIVE trials have demonstrated that liraglutide use in subjects with heart failure and rLVEF was implicated with an increased adverse risk of heart failure-related outcomes.

    Matched MeSH terms: Glucagon-Like Peptide-1 Receptor
  3. Tan JWC, Sim D, Ako J, Almahmeed W, Cooper ME, Dalal JJ, et al.
    Eur Cardiol, 2021 Feb;16:e14.
    PMID: 33976709 DOI: 10.15420/ecr.2020.52
    The Asian Pacific Society of Cardiology convened a consensus statement panel for optimising cardiovascular (CV) outcomes in type 2 diabetes, and reviewed the current literature. Relevant articles were appraised using the Grading of Recommendations, Assessment, Development and Evaluation system, and consensus statements were developed in two meetings and were confirmed through online voting. The consensus statements indicated that lifestyle interventions must be emphasised for patients with prediabetes, and optimal glucose control should be encouraged when possible. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are recommended for patients with chronic kidney disease with adequate renal function, and for patients with heart failure with reduced ejection fraction. In addition to SGLT2i, glucagon-like peptide-1 receptor agonists are recommended for patients at high risk of CV events. A blood pressure target below 140/90 mmHg is generally recommended for patients with type 2 diabetes. Antiplatelet therapy is recommended for secondary prevention in patients with atherosclerotic CV disease.
    Matched MeSH terms: Glucagon-Like Peptide-1 Receptor
  4. Yap MKK, Misuan N
    PMID: 30417596 DOI: 10.1111/bcpt.13169
    Type II diabetes mellitus (T2DM) is a chronic non-communicable disease due to abnormal insulin actions causing uncontrolled hyperglycaemia. The treatment for T2DM, for instance, metformin and incretin mimetic, mainly focuses on the restoration of insulin sensitivity and secretion. Exendin-4 is a short incretin-mimetic peptide consisting of 39 amino acids. It is discovered in the venom of Heloderma suspectum as a full agonist for the glucagon-like peptide 1 (GLP-1) receptor and produces insulinotropic effects. It is more resistant to enzymatic degradation by dipeptidyl-peptidase-4 and has a longer half-life than the endogenous GLP-1; thus, it is further developed as an incretin hormone analogue used to treat T2DM. The helical region of the peptide first interacts with the extracellular N-terminal domain (NTD) of GLP-1 receptor while the C-terminal extension containing the tryptophan cage further enhances its binding affinity. After binding to the NTD of the receptor, it may cause the receptor to switch from its auto-inhibited state of the receptor to its auto-activated state. Exendin-4 enhances the physiological functions of β-cells and the up-regulation of GLP-1 receptors, thus reducing the plasma glucose levels. Moreover, exendin-4 has also been found to ameliorate neuropathy, nephropathy and ventricular remodelling. The therapeutic effects of exendin-4 have also been extrapolated into several clinical trials. Although exendin-4 has a reasonable subcutaneous bioavailability, its half-life is rather short. Therefore, several modifications have been undertaken to improve its pharmacokinetics and insulinotropic potency. This review focuses on the pharmacology of exendin-4 and the structure-function relationships of exendin-4 with GLP-1 receptor. The review also highlights some challenges and future directions in the improvement of exendin-4 as an anti-diabetic drug.
    Matched MeSH terms: Glucagon-Like Peptide-1 Receptor
  5. Lok KH, Wareham NJ, Nair RS, How CW, Chuah LH
    Pharmacol Res, 2022 Jun;180:106237.
    PMID: 35487405 DOI: 10.1016/j.phrs.2022.106237
    The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
    Matched MeSH terms: Glucagon-Like Peptide-1 Receptor
  6. Verma RK, Sriramaneni R, Pandey M, Chaudhury H, Gorain B, Gupta G
    Panminerva Med, 2018 Dec;60(4):224-225.
    PMID: 29856185 DOI: 10.23736/S0031-0808.18.03479-1
    Matched MeSH terms: Glucagon-Like Peptide-1 Receptor/agonists*
  7. Yu Pan C, Han P, Liu X, Yan S, Feng P, Zhou Z, et al.
    Diabetes Metab Res Rev, 2014 Nov;30(8):726-35.
    PMID: 24639432 DOI: 10.1002/dmrr.2541
    BACKGROUND: This study assessed the efficacy and safety of the once-daily glucagon-like peptide-1 receptor agonist, lixisenatide, in Asian patients with type 2 diabetes mellitus inadequately controlled on metformin ± sulfonylurea.
    METHODS: In this 24-week, double-blind, placebo-controlled, multinational study, patients were randomized to lixisenatide 20 µg once daily or placebo. The primary endpoint was absolute change in glycated haemoglobin (HbA1c ) from baseline to week 24.
    RESULTS: A total of 391 patients were randomized. Lixisenatide significantly reduced HbA1c levels compared with placebo (LS mean difference: -0.36%, p = 0.0004). A significantly higher proportion of lixisenatide-treated patients achieved HbA1c targets of <7% (p = 0.003) and ≤6.5% (p = 0.001) versus placebo. Lixisenatide was associated with a statistically significant reduction in 2-h postprandial plasma glucose after a standardized breakfast versus placebo (LS mean difference: -4.28 mmol/L, p glucagon-like peptide-1 (GLP-1) receptor agonists; lixisenatide; type 2 diabetes mellitus (T2DM)
    Matched MeSH terms: Glucagon-Like Peptide-1 Receptor
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links