Displaying all 4 publications

Abstract:
Sort:
  1. Abu Bakar AF, Yusoff I, Fatt NT, Othman F, Ashraf MA
    Biomed Res Int, 2013;2013:890803.
    PMID: 24102060 DOI: 10.1155/2013/890803
    The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata) to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2%) and zinc (93.7%) and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8%) compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5%) and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water.
    Matched MeSH terms: Gold/metabolism
  2. Kuppusamy P, Ichwan SJ, Parine NR, Yusoff MM, Maniam GP, Govindan N
    J Environ Sci (China), 2015 Mar 1;29:151-7.
    PMID: 25766024 DOI: 10.1016/j.jes.2014.06.050
    In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV-Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24-38 nm for gold and 30-45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.
    Matched MeSH terms: Gold/metabolism
  3. Xu X, Yi C, Feng T, Ge Y, Liu M, Wu C, et al.
    Clin Immunol, 2023 Aug;253:109685.
    PMID: 37406980 DOI: 10.1016/j.clim.2023.109685
    Inducing tumor-specific T cell responses and regulating suppressive tumor microenvironments have been a challenge for effective tumor therapy. CpG (ODN), the Toll-like receptor 9 agonist, has been widely used as adjuvants of cancer vaccines to induce T cell responses. We developed a novel adjuvant to improve the targeting of lymph nodes. CpG were modified with lipid and glycopolymers by the combination of photo-induced RAFT polymerization and click chemistry, and the novel adjuvant was termed as lipid-glycoadjuvant@AuNPs (LCpG). OVA protein was used as model antigen and melanoma model was established to test the immunotherapy effect of the adjuvant. In tumor model, the antitumor effect and mechanism of LCpG on the response of CTLs were examined by flow cytometry and cell cytotoxicity assay. The effects of LCpG on macrophage polarization and Tregs differentiation in tumor microenvironment were also studied by cell depletion assay and cytokine neutralization assay. We also tested the therapeutic effect of the combination of the adjuvant and anti-PD-1 treatment. LCpG could be rapidly transported to and retained longer in the lymphoid nodes than unmodified CpG. In melanoma model, LCpG controlled both primary tumor and its metastasis, and established long-term memory. In spleen and tumor draining lymphoid nodes, LCpG activated tumor-specific Tc1 responses, with increased CD8+ T-cell proliferation, antigen-specific Tc1 cytokine production and specific-tumor killing capacity. In tumor microenvironments, antigen-specific Tc1 induced by the LCpG promoted CTL infiltration, skewed tumor associated macrophages to M1 phenotype, regulated Treg and induced proinflammatory cytokines production in a CTL-derived IFN-γ-dependent manner. In vivo cell depletion and adoptive transfer experiments confirmed that antitumor activity of LCpG included vaccine was mainly dependent on CTL-derived IFN-γ. The anti-tumor efficacy of LCpG was dramatically enhanced when combined with anti-PD1 immunotherapy. LCpG was a promising adjuvant for vaccine formulation which could augment tumor-specific Tc1 activity, and regulate tumor microenvironments.
    Matched MeSH terms: Gold/metabolism
  4. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S
    Biotechnol Appl Biochem, 2019 Jul;66(4):698-708.
    PMID: 31172593 DOI: 10.1002/bab.1787
    Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
    Matched MeSH terms: Gold/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links