The phoretic association between Macrocheles muscaedomesticae and flies that inhabited poultry manure in a poultry farm in Sungai Buloh, Selangor, Malaysia was studied. The effects of temperature, relative humidity and fly abundance on phoretic rates also were investigated. The most abundant fly species found was Musca domestica; Musca sorbens, Chrysomyia megacephala and Ophyra chalcogaster were present in relatively large numbers. Representatives of ten families of mites were found on collected Mu. domestica. The most common mite was Ma. muscaedomesticae (Macrochelidae), found on all four species of flies mentioned above. The highest infestation (2.0%) occurred on O. chalcogaster but Mu. domestica had the highest average number infested (5.7). The ventral part of the housefly's abdomen was the most common site of mite attachment. Usually only one mite was found attached per fly. The highest phoretic rate recorded was 64.4 Ma. muscaedomesticae per 1000 Mu. domestica. There was no correlation between phoretic rates and Ma. muscaedomesticae abundance, nor was relative humidity a factor. However, a positive correlation was recorded in this host species between phoretic rates and temperature.
A study on population patterns of the parasitoid Spalangia endius Walker at a dumping ground near Kuala Lumpur city showed that the percentage of S. endius adult emergence varied seasonally. During the relatively heavy rainfall months of August and November 1988, and January, March, and April 1989, the population of S. endius adult emergence were low (0-14.2%) compared to the less rainy months of July, September, and December 1988, and May 1989 (29.3-39.6%). This information could be useful in formulating strategies to reduce house fly population at the refuse dumping ground through integrated pest management programs.
Blastocystis a single-celled eukaryotic protist, is known to inhabit the intestines of various hosts, including humans, and has been implicated in a wide spectrum of symptoms, ranging from gastrointestinal issues to skin disorders, thereby establishing its status as an emerging infectious agent. In this study, the prevalence of Blastocystis infection was investigated in insects, including cockroaches, houseflies, and crickets, as well as sea turtles. Additionally, the genotypic characteristics of the isolated Blastocystis strains were examined, and the evolutionary relationships between Blastocystis species found in sea turtles, and animals/humans were determined. Microscopic techniques and molecular methods were utilized in this study. The results showed that four out of 90 insects (4.44%) and one out of 13 sea turtles (7.7%) were infected by Blastocystis. Furthermore, detailed observations revealed the presence of characteristic morphological features, such as vacuolar forms in the cockroach, cricket and sea turtle samples and binary fission from cockroach samples, indicative of Blastocystis' mode of reproduction. While the ST8 of Blastocystis in sea turtles were successfully identified, no subtyping was achieved for the infected insects. This study not only establishes the occurrence of Blastocystis infection in sea turtles but also uncovers its ability to infect insects, suggesting a potential reservoir role for these organisms. Overall, this research emphasizes the significance of comprehending the prevalence, genotypic diversity, and evolutionary relationships of Blastocystis across various hosts. Such insights are instrumental in developing effective control measures and public health interventions to mitigate the associated symptoms and prevent future outbreaks.