Displaying all 8 publications

Abstract:
Sort:
  1. Jin LZ, Ho YW, Abdullah N, Ali MA, Jalaludin S
    Lett Appl Microbiol, 1996 Aug;23(2):67-71.
    PMID: 8987444
    Twelve Lactobacillus strains isolated from chicken intestine, which demonstrated a strong and moderate capacity to adhere to the ileal epithelial cells in vitro, were used to investigate their inhibitory ability against five strains of salmonella, i.e. Salmonella enteritidis 935/79, Salm. pullorum, Salm. typhimurium, Salm. blockley and Salm. enteritidis 94/448, and three serotypes of Escherichia coli, viz. E. coli O1:K1, O2:K1 and O78:K80. The results showed that all the 12 Lactobacillus isolates were able to inhibit the growth of the five strains of salmonella, and the three strains of E. coli in varying degrees. Generally, they were more effective in inhibiting the growth of salmonella than E. coli. Inhibition of the pathogenic bacteria was probably due to the production of organic acids by the Lactobacillus isolates.
    Matched MeSH terms: Ileum/microbiology
  2. Jin LZ, Ho YW, Abdullah N, Ali MA, Jalaludin S
    J Appl Microbiol, 1998 Jun;84(6):1171-4.
    PMID: 9717304
    Two Lactobacillus isolates, Lact. acidophilus I 26 and Lact. fermentum I 25, were selected, based on their poor aggregation with Escherichia coli and strong ability to adhere to ileal epithelial cells (IEC), to study in vitro interactions with E. coli O1:K1, O2:K1 and O78:K80 in an IEC radioactive-assay under the conditions of exclusion (lactobacilli and IEC, followed by the addition of E. coli), competition (lactobacilli, IEC and E. coli together) and displacement (E. coli and IEC, followed by the addition of lactobacilli). The results indicated that Lact. acidophilus I 26 and Lact. fermentum I 25 could not significantly reduce the attachment of E. coli O1:K1, O2:K1 and O78:K80 to IEC under the three conditions tested in vitro, except that the attachment of E. coli O1:K1 was slightly reduced by Lact. fermentum I 25 in the test for competition.
    Matched MeSH terms: Ileum/microbiology
  3. Jin LZ, Ho YW, Ali MA, Abdullah N, Jalaludin S
    J. Appl. Bacteriol., 1996 Aug;81(2):201-6.
    PMID: 8760330
    Single strains of Lactobacillus acidophilus and Lact. fermentum, isolated from chicken intestine, were used to study in vitro interactions with Salmonella enteritidis, Salm. pullorum or Salm. typhimurium in an ileal epithelial cell (IEC) radioactive assay. Exclusion, competition and displacement phenomena were investigated by respectively incubating (a) lactobacilli and IEC together, prior to addition of salmonellae, (b) lactobacilli, IEC and salmonellae together, and (c) salmonellae and IEC, followed by the lactobacilli. Lactobacilli were selected for study because of their strong ability to adhere to IEC and poor aggregation with salmonellae. The results demonstrated that Lact. acidophilus significantly reduced (P < 0.05) the attachment of Salm. pullorum to IEC in the tests for exclusion and competition, but not in the displacement tests. Lactobacillus fermentum was found to have some ability to reduce the attachment of Salm. typhimurium to IEC under the conditions of exclusion (P < 0.08), competition (P < 0.09), but not displacement. However, both Lact. acidophilus and Lact. fermentum were unable to reduce the adherence of Salm. enteritidis to IEC under any of the conditions.
    Matched MeSH terms: Ileum/microbiology*
  4. Jin LZ, Ho YW, Abdullah N, Jalaludin S
    Lett Appl Microbiol, 1998 Sep;27(3):183-5.
    PMID: 9750324
    Twelve Lactobacillus strains isolated from chicken intestine were used to investigate acid and bile tolerance in vitro. Ten out of the 12 strains were slightly affected by 0.3% bile salts, showing a delay of growth (d) of 0.6-37.2 min compared with growth in control cultures. Two strains were not affected by the bile salts. Of the 12 strains, seven could be arbitrarily classified as resistant (d < 15 min) and five as tolerant (15 min < d < or = 40 min). Lactobacillus strains from the caecum showed better tolerance to acid than those from the ileum. Generally, the survival of the ileal strains was very low at pH 1.0 and 2.0, and moderate at pH 3.0. In contrast, caecal Lactobacillus strains could survive at pH 1.0 for up to 2 h of incubation; growth was moderate at pH 2.0 and good at pH 3.0 and 4.0.
    Matched MeSH terms: Ileum/microbiology
  5. Jin LZ, Ho YW, Ali MA, Abdullah N, Ong KB, Jalaludin S
    Lett Appl Microbiol, 1996 Mar;22(3):229-32.
    PMID: 8852352
    A total of 46 Lactobacillus isolates obtained from chicken intestine were assessed on their ability to adhere to the chicken ileal epithelial cell (IEC) in vitro. Twelve out of the 46 isolates showed moderate to good ability to adhere to the IEC. Temperature (between 4 degrees C and 42 degrees C) did not affect attachment. Incubation (contact) time of 30 min was found to be insufficient for the attachment of bacteria to the IEC, but contact time beyond 1 h did not increase this ability. The pH values (4-7) of the suspending buffer did not have any significant effect on the attachment of bacteria to the IEC, but at pH 8 it was reduced significantly (P < 0.05).
    Matched MeSH terms: Ileum/microbiology*
  6. Amin A, Ali A, Kurunathan S, Cheong TG, Al-Jashamy KA, Jaafar H, et al.
    Histol Histopathol, 2009 05;24(5):559-65.
    PMID: 19283664 DOI: 10.14670/HH-24.559
    Vibrio cholerae is the causative agent of the infectious disease, cholera. The bacteria adhere to the mucosal membrane and release cholera toxin, leading to watery diarrhea. There are >100 serovars of V. cholerae, but the O1 and O139 serovars are the main causative agents of cholera. The present study aimed to compare the severity of intestinal mucosal infection caused by O1 El Tor and O139 V. cholerae in a rabbit ileal loop model. The results showed that although the fluid accumulation was similar in the loops inoculated with O1 and O139 V. cholerae, the presence of blood was detected only in the loops inoculated with the O139 serovar. Serosal hemorrhage was confirmed by histopathological examination and the loops inoculated with O139 showed massive destruction of villi and loss of intestinal glands. The submucosa and muscularis mucosa of the ileum showed the presence of edema with congested blood vessels, while severe hemorrhage was seen in the muscularis propria layer. The loops inoculated with O1 El Tor showed only minimal damage, with intact intestinal villi and glands. Diffuse colonies of the O139 serovar were seen to have infiltrated deep into the submucosal layer of the intestine. Although the infection caused by the O1 serovar was focal and invasive, it was more superficial than that due to O139, and involved only the villi. These observations were confirmed by immunostaining with O1 and O139 V. cholerae-specific monoclonal antibodies. The peroxidase reaction demonstrated involvement of tissues down to the submucosal layer in O139 V. cholerae infection, while in O1 El Tor infection, the reaction was confined mainly to the villi, and was greatly reduced in the submucosal region. This is the first reported study to clearly demonstrate the histopathological differences between infections caused by the O139 Bengal and O1 El Tor pathogenic serovars of V. cholerae.
    Matched MeSH terms: Ileum/microbiology
  7. Soleimani AF, Zulkifli I, Hair-Bejo M, Ebrahimi M, Jazayeri SD, Hashemi SR, et al.
    Avian Pathol, 2012;41(4):351-4.
    PMID: 22834548 DOI: 10.1080/03079457.2012.691155
    Stressors may influence chicken susceptibility to pathogens such as Salmonella enterica. Feed withdrawal stress can cause changes in normal intestinal epithelial structure and may lead to increased attachment and colonization of Salmonella. This study aimed to investigate modulatory effects of epigenetic modification by feed restriction on S. enterica serovar Enteritidis colonization in broiler chickens subjected to feed withdrawal stress. Chicks were divided into four groups: ad libitum feeding; ad libitum feeding with 24-h feed withdrawal on day 42; 60% feed restriction on days 4, 5, and 6; and 60% feed restriction on days 4, 5, and 6 with 24-h feed withdrawal on day 42. Attachment of S. Enteritidis to ileal tissue was determined using an ex vivo ileal loop assay, and heat shock protein 70 (Hsp70) expression was evaluated using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting. Feed withdrawal stress increased S. Enteritidis attachment to ileal tissue. However, following feed withdrawal the epigenetically modified chickens had significantly lower attachment of S. Enteritidis than their control counterparts. A similar trend with a very positive correlation was observed for Hsp70 expression. It appears that epigenetic modification can enhance resistance to S. Enteritidis colonization later in life in chickens under stress conditions. The underlying mechanism could be associated with the lower Hsp70 expression in the epigenetically modified chickens.
    Matched MeSH terms: Ileum/microbiology
  8. Fitzgerald SF, Beckett AE, Palarea-Albaladejo J, McAteer S, Shaaban S, Morgan J, et al.
    PLoS Pathog, 2019 10;15(10):e1008003.
    PMID: 31581229 DOI: 10.1371/journal.ppat.1008003
    Specific Escherichia coli isolates lysogenised with prophages that express Shiga toxin (Stx) can be a threat to human health, with cattle being an important natural reservoir. In many countries the most severe pathology is associated with enterohaemorrhagic E. coli (EHEC) serogroups that express Stx subtype 2a. In the United Kingdom, phage type (PT) 21/28 O157 strains have emerged as the predominant cause of life-threatening EHEC infections and this phage type commonly encodes both Stx2a and Stx2c toxin types. PT21/28 is also epidemiologically linked to super-shedding (>103 cfu/g of faeces) which is significant for inter-animal transmission and human infection as demonstrated using modelling studies. We demonstrate that Stx2a is the main toxin produced by stx2a+/stx2c+ PT21/28 strains induced with mitomycin C and this is associated with more rapid induction of gene expression from the Stx2a-encoding prophage compared to that from the Stx2c-encoding prophage. Bacterial supernatants containing either Stx2a and/or Stx2c were demonstrated to restrict growth of bovine gastrointestinal organoids with no restriction when toxin production was not induced or prevented by mutation. Isogenic strains that differed in their capacity to produce Stx2a were selected for experimental oral colonisation of calves to assess the significance of Stx2a for both super-shedding and transmission between animals. Restoration of Stx2a expression in a PT21/28 background significantly increased animal-to-animal transmission and the number of sentinel animals that became super-shedders. We propose that while both Stx2a and Stx2c can restrict regeneration of the epithelium, it is the relatively rapid and higher levels of Stx2a induction, compared to Stx2c, that have contributed to the successful emergence of Stx2a+ E. coli isolates in cattle in the last 40 years. We propose a model in which Stx2a enhances E. coli O157 colonisation of in-contact animals by restricting regeneration and turnover of the colonised gastrointestinal epithelium.
    Matched MeSH terms: Ileum/microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links