METHODS: Rats were fed with illicit (a concoction of street ketamine) ketamine in doses of 100 (N=12), or 300 mg/kg (N=12) for four weeks. Half of the rats were sacrificed after the 4-week feeding for necropsy. The remaining rats were taken off ketamine for 8 weeks to allow for any potential recovery of pathological changes before being sacrificed for necropsy. Histopathological examination was performed on the kidney and urinary bladder.
RESULTS: Submucosal bladder inflammation was seen in 67% of the rats fed with 300 mg/kg illicit ketamine. No bladder inflammation was observed in the control and 100 mg/kg illicit ketamine groups. Renal changes, such as interstitial nephritis and papillary necrosis, were observed in rats given illicit ketamine. After ketamine cessation, no inflammation was observed in the bladder of all rats. However, renal inflammation remained in 60% of the rats given illicit ketamine. No dose-effect relationship was established between oral ketamine and changes in the kidneys.
CONCLUSION: Oral ketamine caused pathological changes in the urinary tract, similar to that described in exposure to parenteral ketamine. The changes in the urinary bladder were reversible after short-term exposure.
AIMS: To investigate the effect of ketamine on emergence agitation in children.
METHODS: Databases of MEDLINE, EMBASE, and CENTRAL were systematically searched from their start date until February 2019. Randomized controlled trials comparing intravenous ketamine and placebo in children were sought. The primary outcome was the incidence of emergence agitation. Secondary outcomes included postoperative pain score, duration of discharge time, and the adverse effects associated with the use of ketamine, namely postoperative nausea and vomiting, desaturation, and laryngospasm.
RESULTS: Thirteen studies (1125 patients) were included in the quantitative meta-analysis. The incidence of emergence agitation was 14.7% in the ketamine group and 33.3% in the placebo group. Children receiving ketamine had a lower incidence of emergence agitation, with an odds ratio being 0.23 (95% confidence interval: 0.11 to 0.46), certainty of evidence: low. In comparison with the placebo, ketamine group achieved a lower postoperative pain score (odds ratio: -2.42, 95% confidence interval: -4.23 to -0.62, certainty of evidence: very low) and lower pediatric anesthesia emergence delirium scale at 5 minutes after operation (odds ratio: -3.99, 95% confidence interval: -5.03 to -2.95; certainty of evidence: moderate). However, no evidence was observed in terms of incidence of postoperative nausea and vomiting, desaturation, and laryngospasm.
CONCLUSION: In this meta-analysis of 13 randomized controlled trials, high degree of heterogeneity and low certainty of evidence limit the recommendations of ketamine for the prevention of emergence agitation in children undergoing surgery or imaging procedures. However, the use of ketamine is well-tolerated without any notable adverse effects across all the included trials.
PROSPERO REGISTRATION: CRD42019131865.
METHODS: This phase 3, open-label, multicenter, long-term (up to 1 year) study was conducted between October 2015 and October 2017. Patients (≥ 18 years) with TRD (DSM-5 diagnosis of major depressive disorder and nonresponse to ≥ 2 OAD treatments) were enrolled directly or transferred from a short-term study (patients aged ≥ 65 years). Esketamine nasal spray (28-mg, 56-mg, or 84-mg) plus new OAD was administered twice a week in a 4-week induction (IND) phase and weekly or every-other-week for patients who were responders and entered a 48-week optimization/maintenance (OP/MAINT) phase.
RESULTS: Of 802 enrolled patients, 86.2% were direct-entry and 13.8% were transferred-entry; 580 (74.5%) of 779 patients who entered the IND phase completed the phase, and 150 (24.9%) of 603 who entered the OP/MAINT phase completed the phase. Common treatment-emergent adverse events (TEAEs) were dizziness (32.9%), dissociation (27.6%), nausea (25.1%), and headache (24.9%). Seventy-six patients (9.5%) discontinued esketamine due to TEAEs. Fifty-five patients (6.9%) experienced serious TEAEs. Most TEAEs occurred on dosing days, were mild or moderate in severity, and resolved on the same day. Two deaths were reported; neither was considered related to esketamine. Cognitive performance generally either improved or remained stable postbaseline. There was no case of interstitial cystitis or respiratory depression. Treatment-emergent dissociative symptoms were transient and generally resolved within 1.5 hours postdose. Montgomery-Åsberg Depression Rating Scale total score decreased during the IND phase, and this reduction persisted during the OP/MAINT phase (mean [SD] change from baseline of respective phase to endpoint: IND, -16.4 [8.76]; OP/MAINT, 0.3 [8.12]).
CONCLUSIONS: Long-term esketamine nasal spray plus new OAD therapy had a manageable safety profile, and improvements in depression appeared to be sustained in patients with TRD.
TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02497287.