Displaying all 3 publications

Abstract:
Sort:
  1. Gomez-Eichelmann MC, Holz G, Beach D, Simpson AM, Simpson L
    Mol Biochem Parasitol, 1988 Jan 15;27(2-3):143-58.
    PMID: 3344003
    Eight strains of a lizard Leishmania species, L. tarentolae, were compared with four other saurian species [L. hoogstrali, L. adleri, L. agamae and Leishmania sp. LizS], with L. major from man and with Trypanosoma platydactyli, a putative lizard trypanosome, in terms of kinetoplast DNA minicircle and maxicircle sequences and in terms of nuclear chromosome patterns on orthogonal gel electrophoresis. The L. tarentolae strains fell into two major groups, one (group A) consisting of the L. tarentolae strains, UC, Krassner and Trager, derived from an Algerian gecko isolate and the other (group B) consisting of five L. tarentolae LEM strains isolated from geckos in southern France. T. platydactyli TPCL2, which was postulated by Wallbanks et al. to represent the lizard form of a French L. tarentolae strain, was closely related to the UC strain and not to the LEM strains, in all respects analyzed. Leishmania sp. LizS from a Mongolian gecko and L. hoogstrali from a Sudanese gecko showed some sequence similarities to the L. tarentolae strains, but the leishmanias said to be L. adleri from a Kenyan lacertid and L. agamae from an Israeli agamid showed no minicircle sequence similarities with lizard Leishmania and in fact were probably the same species. The maxicircle divergent region was larger in the group B strains than in the group A strains, but there were sequences in common with both groups, and not with L. hoogstrali and L. major. Four strains of L. tarentolae, the four other supposed saurian Leishmania species, three mammalian leishmanias, T. platydactyli and four other trypanosomes, T. cyclops (Malaysian macaque), T. conorrhini (Hawaiian reduviid bug), T. cruzi (man) and T. lewisi (feral rat) were analyzed for their contents of sterols and phosphoglyceride fatty acyl groups. T. platydactyli TPCL2 contained a sterol (5-dehydroepisterol), a phosphatidylcholine fatty acyl group (alpha-linolenic acid) and a phosphatidylethanolamine fatty acyl group (dihydrosterculic acid) characteristic of members of the genus Leishmania and not the genus Trypanosoma. The proportions of those lipids in the free sterol and phosphoglyceride fractions of T. platydactyli TPCL2 most closely resembled those seen in the Leishmania strains from Algerian, French, Mongolian and Sudanese geckos.
    Matched MeSH terms: Leishmania/isolation & purification*
  2. Mahdy MA, Al-Mekhlafi HM, Al-Mekhlafi AM, Lim YA, Bin Shuaib NO, Azazy AA, et al.
    PLoS One, 2010 Sep 20;5(9).
    PMID: 20862227 DOI: 10.1371/journal.pone.0012879
    BACKGROUND: Cutaneous leishmaniasis (CL) is a neglected tropical disease endemic in the tropics and subtropics with a global yearly incidence of 1.5 million. Although CL is the most common form of leishmaniasis, which is responsible for 60% of DALYs lost due to tropical-cluster diseases prevalent in Yemen, available information is very limited.

    METHODOLOGY/PRINCIPAL FINDINGS: This study was conducted to determine the molecular characterization of Leishmania species isolated from human cutaneous lesions in Yemen. Dermal scrapes were collected and examined for Leishmania amastigotes using the Giemsa staining technique. Amplification of the ribosomal internal transcribed spacer 1(ITS-1) gene was carried out using nested PCR and subsequent sequencing. The sequences from Leishmania isolates were subjected to phylogenetic analysis using the neighbor-joining and maximum parsimony methods. The trees identified Leishmania tropica from 16 isolates which were represented by two sequence types.

    CONCLUSIONS/SIGNIFICANCE: The predominance of the anthroponotic species (i.e. L. tropica) indicates the probability of anthroponotic transmission of cutaneous leishmaniasis in Yemen. These findings will help public health authorities to build an effective control strategy taking into consideration person-to-person transmission as the main dynamic of transmission of CL.

    Matched MeSH terms: Leishmania/isolation & purification*
  3. Abdelhaleem AA, Elamin EM, Bakheit SM, Mukhtar MM
    Trop Biomed, 2019 Dec 01;36(4):866-873.
    PMID: 33597459
    This study was aimed to identify and characterize Leishmania amastigote, and axenic form antigens. Two in vitro techniques were used to change leishmania parasite isolates from promastigote form to amastigotes and amastigote like (axenic) forms. The main strategy relied upon in vitro infection of murine macrophages cell line J774 with leishmania promastigote, at 37°C with 5% CO2, while the second technique relied upon the culture of promastigote at 37°C with low pH (5.5), and 5-10% CO2. Proteins were extracted and fractionated utilizing 12% Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS PAGE). Antigens were recognized using both immune dot blot and western blot procedures. PCR was performed for recognition of leishmania parasites in infected J774 macrophages. L. major was quicker in infectivity of macrophages cell line than L. donovani. Shared proteins ranging from 26-116 kDa were identified by SDS PAGE in all stages. Immune Dot-blot method showed positive outcomes, while western blot identified an exceptional antigen band of 16 kDa in amastigote, this unique band could be of value in diagnosis and vaccination of leishmaniasis. PCR results confirmed presence of both isolates demonstrating that coinfection is conceivable, and no indications of hereditary recombination at kinetoplast DNA (kDNA) were identified in macrophages simultaneously infected by L. major and L. donovani.
    Matched MeSH terms: Leishmania/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links