Displaying all 5 publications

Abstract:
Sort:
  1. Omar M, Zaliza S, Mariappan M, Zainal AO, Chua KB
    Malays J Pathol, 2011 Dec;33(2):113-7.
    PMID: 22299212 MyJurnal
    A field evaluation on the effectiveness of a modified approach of chemical fogging of insecticides against the conventional method was carried out in the Seremban district within the state of Negeri Sembilan, Malaysia from 7th February 2003 to 7th September 2003. In the 3 months period, November 2002 to January 2003, prior to institution of modified approach of chemical fogging, 27 of 42 (64.3%) dengue outbreaks were successfully controlled within the stipulated time frame of 14 days by the conventional approach of thermal chemical fogging. However, during the period when the modified approach of chemical fogging was instituted, 25 of 27 (92.6%) dengue outbreaks within the same district were successfully controlled within the 14-days time-line. Statistically, the modified approach of chemical fogging significantly improved the success rate of achieving dengue outbreak control within the stipulated time frame (chi2 = 5.65, p = 0.01745). The modified approach of chemical fogging also appeared to reduce the number of dengue cases recorded in the same district. This small pilot study shows that the modified approach of chemical fogging reduced cost in carrying out each fogging activity to control dengue outbreak. It also substantially reduced the required time taken to complete each fogging activity in comparison to the conventional approach. Thus, it enabled similar number of workers to cover more localities simultaneously affected by the outbreaks. In addition, the modified approach reduced the exposure time to hazardous insecticides for each worker doing hand-held thermal fogging.
    Matched MeSH terms: Mosquito Control/economics
  2. Packierisamy PR, Ng CW, Dahlui M, Venugopalan B, Halasa YA, Shepard DS
    Asia Pac J Public Health, 2015 Nov;27(8 Suppl):73S-78S.
    PMID: 26047628 DOI: 10.1177/1010539515589339
    We examined variations in dengue vector control costs and resource consumption between the District Health Departments (DHDs) and Local Authorities (LAs) to assist informed decision making as to the future roles of these agencies in the delivery of dengue vector control services in Malaysia. Data were collected from the vector control units of DHDs and LAs in 8 selected districts. We captured costs and resource consumption in 2010 for premise inspection for mosquito breeding sites, fogging to destroy adult mosquitoes and larviciding of potential breeding sites. Overall, DHDs spent US$5.62 million or US$679 per case and LAs spent US$2.61 million or US$499 per case. The highest expenditure for both agencies was for fogging, 51.0% and 45.8% of costs for DHDs and LAs, respectively. The DHDs had higher resource costs for human personnel, vehicles, pesticides, and equipment. The findings provide some evidence to rationalize delivery of dengue vector control services in Malaysia.
    Matched MeSH terms: Mosquito Control/economics*
  3. Packierisamy PR, Ng CW, Dahlui M, Inbaraj J, Balan VK, Halasa YA, et al.
    Am J Trop Med Hyg, 2015 Nov;93(5):1020-1027.
    PMID: 26416116 DOI: 10.4269/ajtmh.14-0667
    Dengue fever, an arbovirus disease transmitted by Aedes mosquitoes, has recently spread rapidly, especially in the tropical countries of the Americas and Asia-Pacific regions. It is endemic in Malaysia, with an annual average of 37,937 reported dengue cases from 2007 to 2012. This study measured the overall economic impact of dengue in Malaysia, and estimated the costs of dengue prevention. In 2010, Malaysia spent US$73.5 million or 0.03% of the country's GDP on its National Dengue Vector Control Program. This spending represented US$1,591 per reported dengue case and US$2.68 per capita population. Most (92.2%) of this spending occurred in districts, primarily for fogging. A previous paper estimated the annual cost of dengue illness in the country at US$102.2 million. Thus, the inclusion of preventive activities increases the substantial estimated cost of dengue to US$175.7 million, or 72% above illness costs alone. If innovative technologies for dengue vector control prove efficacious, and a dengue vaccine was introduced, substantial existing spending could be rechanneled to fund them.
    Matched MeSH terms: Mosquito Control/economics*
  4. Kafy HT, Ismail BA, Mnzava AP, Lines J, Abdin MSE, Eltaher JS, et al.
    Proc Natl Acad Sci U S A, 2017 12 26;114(52):E11267-E11275.
    PMID: 29229808 DOI: 10.1073/pnas.1713814114
    Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to <10 y. When deltamethrin was used for IRS, incidence rates in the LLIN + IRS arm and the LLIN-only arm were similar, with the IRS providing no additional protection [incidence rate ratio (IRR) = 1.0 (95% confidence interval [CI]: 0.36-3.0; P = 0.96)]. When bendiocarb was used for IRS, there was some evidence of additional protection [interaction IRR = 0.55 (95% CI: 0.40-0.76; P < 0.001)]. In conclusion, pyrethroid resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions.
    Matched MeSH terms: Mosquito Control/economics*
  5. Fitzpatrick C, Haines A, Bangert M, Farlow A, Hemingway J, Velayudhan R
    PLoS Negl Trop Dis, 2017 Aug;11(8):e0005785.
    PMID: 28806786 DOI: 10.1371/journal.pntd.0005785
    INTRODUCTION: Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control.

    METHODS: We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine.

    RESULTS: Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine.

    DISCUSSION: Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control.

    Matched MeSH terms: Mosquito Control/economics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links