Displaying all 3 publications

Abstract:
Sort:
  1. Chong KW, Thomas NF, Low YY, Kam TS
    J Org Chem, 2019 Jun 07;84(11):7279-7290.
    PMID: 31056921 DOI: 10.1021/acs.joc.9b00939
    The present investigation represents a continuation of studies on the effect of ortho'-substitution on the reactivity of anodically generated methoxystilbene cation radicals. Whereas previous studies have focused on the effect of ortho'-substituted nucleophilic groups such as OH, NH2, CH2OH, CH2NH2, and COOH, the present study extends the investigation to ortho'-substituted vinyl and formyl groups. The results show that when the ortho'-substituent is a vinyl group, the products include a bisdihydronaphthalene derivative and a doubly bridged, dibenzofused cyclononane from direct trapping of a bis carbocation intermediate. In the presence of an additional 3-methoxy substituent, the products are the tetracyclic chrysene derivatives. When the ortho'-substituent is a nonnucleophilic formyl group, the products include fused indanylnaphthalenes and indanylbenzopyran aldehydes. When an additional 3-methoxy group is present, an unusual fused benzofluorene-dibenzoannulene product is obtained. Mechanistic rationalization for the formation of the various products is presented. The results have contributed to a deeper understanding of how the reactivity of the methoxystilbene cation radicals is affected by the nature of the ortho'-substituents.
    Matched MeSH terms: Organic Chemistry Phenomena
  2. Alhassan FH, Rashid U, Taufiq-Yap YH
    J Oleo Sci, 2015;64(1):91-9.
    PMID: 25492234 DOI: 10.5650/jos.ess14161
    The solid acid Ferric-manganese doped tungstated/molybdena nananoparticle catalyst was prepared via impregnation reaction followed by calcination at 600°C for 3 h. The characterization was done using X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), X-ray fluorescence (XRF), Transmission electron microscope (TEM) and Brunner-Emmett-Teller surface area measurement (BET). Moreover, dependence of biodiesel yield on the reaction variables such as the reaction temperature, catalyst loading, as well as molar ratio of methanol/oil and reusability were also appraised. The catalyst was reused six times without any loss in activity with maximum yield of 92.3% ±1.12 achieved in the optimized conditions of reaction temperature of 200°C; stirring speed of 600 rpm, 1:25 molar ratio of oil to alcohol, 6 % w/w catalyst loading as well as 8 h as time of the reaction. The fuel properties of WCOME's were evaluated, including the density, kinematic viscosity, pour point, cloud point and flash point whereas all properties were compared with the limits in the ASTM D6751 standard.
    Matched MeSH terms: Organic Chemistry Phenomena
  3. Mashitah, Zulfadhly Z, Bhatia S
    PMID: 10595446
    Non-living biomass of Pycnoporus sanguineus has an ability to take up lead,copper and cadmium ions from an aqueous solution. The role played by various functional groups in the cell wall and the mechanism uptake of lead, copper and cadmium by Pycnoporus sanguineus were investigated. Modification of the functional groups such as lipids, carboxylic and amino was done through chemical pretreatment in order to study their role in biosorption of metal ions. Results showed that the chemical modification of these functional groups has modified the ability of biomass to remove lead, copper and cadmium ions from the solution. Scanning electron microscopy was also used to study the morphological structure of the biomass before and after adsorption. The electron micrograph indicated that the structure of biomass changed due to the adsorption of the metals onto the cell walls. Furthermore, the X-ray energy dispersion analysis (EDAX) showed that the calcium ion present in the cell wall of biomass was released and replaced by lead ions. This implied that an ion exchange is one of the principal mechanisms for metal biosorption.
    Matched MeSH terms: Organic Chemistry Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links