METHOD: By using the keywords "acute lymphoblastic leukemia", and "microarray", a total of 280 and 275 microarray datasets were found listed in Gene Expression Omnibus database GEO and ArrayExpress database respectively. Further manual inspection found that only three studies (GSE18497, GSE28460, GSE3910) were focused on gene expression profiling of paired diagnosis-relapsed pediatric B-ALL. These three datasets which comprised of a total of 108 matched diagnosis-relapsed pediatric B-ALL samples were then included for this meta-analysis using RankProd approach.
RESULTS: Our analysis identified a total of 1795 upregulated probes which corresponded to 1527 genes (pfp 1), and 1493 downregulated probes which corresponded to 1214 genes (pfp cell cycle processes (enrichment score = 15.3), whilst the downregulated genes were clustered in transcription regulation (enrichment score = 12.6). Elevated expression of cell cycle regulators (e.g kinesins, AURKA, CDKs) was the key genetic defect implicated in relapsed ALL, and serve as attractive targets for therapeutic intervention.
CONCLUSION: We identified S100A8 as the most overexpressed gene, and the cell cycle pathway as the most promising biomarker and therapeutic target for relapsed childhood B-ALL. The validity of the results warrants further investigation.
METHODS: We used semi-quantitative reverse-transcriptase PCR (RT-PCR) and Western blot to investigate the expression of full length p53 (TAp53), Delta40p53, Delta133p53 or p53beta in diagnostic marrow from a clinical cohort of 50 BCP-ALL patients without TP53 mutation (29 males and 21 females, age range 2-14 years) and in the bone marrow cells of 4 healthy donors (used as controls).
RESULTS: Irrespective of isoforms, levels of p53 mRNA were low in controls but were increased by 2 to 20-fold in primary or relapse BCP-ALL. TAp53 was increased in primary BCP-ALL, Delta40p53 was elevated in relapse BCP-ALL, whereas Delta133p53 and p53beta were increased in both. Next, mRNA levels were used as a basis to infer the ratio between protein isoform levels. This inference suggested that, in primary BCP-ALL, p53 was predominantly in active oligomeric conformations dominated by TAp53. In contrast, p53 mostly existed in inactive quaternary conformations containing ≥2 Delta40 or Delta133p53 in relapse BCP-ALL. Western blot analysis of blasts from BCP-ALL showed a complex pattern of N-terminally truncated p53 isoforms, whereas TAp53beta was detected as a major isoform. The hypothesis that p53 is in an active form in primary B-ALL was consistent with elevated level of p53 target genes CDKN1A and MDM2 in primary cases, whereas in relapse BCP-ALL, only CDKN1A was increased as compared to controls.
CONCLUSION: Expression of p53 isoforms is deregulated in BCP-ALL in the absence of TP53 mutation, with increased expression of alternative isoforms in relapse BCP-ALL. Variations in isoform expression may contribute to functional deregulation of the p53 pathway in BCP-ALL, specifically contributing to its down-regulation in relapse forms.