Displaying all 4 publications

Abstract:
Sort:
  1. Harith HH, Di Bartolo BA, Cartland SP, Genner S, Kavurma MM
    J Diabetes, 2016 Jul;8(4):568-78.
    PMID: 26333348 DOI: 10.1111/1753-0407.12339
    BACKGROUND: Insulin regulates glucose homeostasis but can also promote vascular smooth muscle (VSMC) proliferation, important in atherogenesis. Recently, we showed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) stimulates intimal thickening via accelerated growth of VSMCs. The aim of the present study was to determine whether insulin-induced effects on VSMCs occur via TRAIL.

    METHODS: Expression of TRAIL and TRAIL receptor in response to insulin and glucose was determined by polymerase chain reaction. Transcriptional activity was assessed using wild-type and site-specific mutations of the TRAIL promoter. Chromatin immunoprecipitation studies were performed. VSMC proliferation and apoptosis was measured.

    RESULTS: Insulin and glucose exposure to VSMC for 24 h stimulated TRAIL mRNA expression. This was also evident at the transcriptional level. Both insulin- and glucose-inducible TRAIL transcriptional activity was blocked by dominant-negative specificity protein-1 (Sp1) overexpression. There are five functional Sp1-binding elements (Sp1-1, Sp1-2, Sp-5/6 and Sp1-7) on the TRAIL promoter. Insulin required the Sp1-1 and Sp1-2 sites, but glucose needed all Sp1-binding sites to induce transcription. Furthermore, insulin (but not glucose) was able to promote VSMC proliferation over time, associated with increased decoy receptor-2 (DcR2) expression. In contrast, chronic 5-day exposure of VSMC to 1 µg/mL insulin repressed TRAIL and DcR2 expression, and reduced Sp1 enrichment on the TRAIL promoter. This was associated with increased cell death.

    CONCLUSIONS: The findings of the present study provide a new mechanistic insight into how TRAIL is regulated by insulin. This may have significant implications at different stages of diabetes-associated cardiovascular disease. Thus, TRAIL may offer a novel therapeutic solution to combat insulin-induced vascular pathologies.

    Matched MeSH terms: Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
  2. Chan ZCK, Leong KH, Kareem HS, Norazit A, Noor SM, Ariffin A
    Naunyn Schmiedebergs Arch Pharmacol, 2020 03;393(3):405-417.
    PMID: 31641820 DOI: 10.1007/s00210-019-01730-2
    The rationale of designing compounds containing a (3,4,5-trimethoxybenzyloxy) phenyl moiety is largely due to its potential antioxidant and cytotoxic activities. A previous study focused on its antioxidant mechanism, whereas in this study, we investigated the cytotoxicity of a series of 28 analogues and the mechanism of apoptosis of the most cytotoxic compound against wild-type (HCT-116) and p53 mutant (HT-29) colorectal cancer cell lines. The series of analogues comprise of different families, namely hydrazone, oxadiazole, thiosemicarbazides and triazoles. In the initial cytotoxicity screening, N-(3,4,5-trimethoxybenzylidene)-4-(3,4,5-trimethoxybenzyloxy) benzohydrazide, henceforth known as, P5H, was found to be most cytotoxic against human colorectal cancer cell lines (IC50 for HCT-116 = 11.79 μM and HT-29 = 18.52 μM). Additionally, P5H was found to have some degree of selectivity towards cancer cells compared to normal human colon cells (CCD-112 CoN). Subsequent investigation had brought insight on P5H ability to induce apoptosis in both HCT-116 and HT-29 cell lines. Cell cycle analysis showed both cell lines were arrested at the G2/M phase upon treatment. Our study concluded that P5H induced the death receptor, DR5 in HCT-116 and mitochondria-mediated apoptosis pathway in HT-29. Therefore, P5H may be a promising candidate as a chemotherapy agent against colon cancer. Graphical abstract The apoptotic pathways induced in HT-29 and HCT-116 cells upon P5H treatment.
    Matched MeSH terms: Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism*
  3. Maha A, Cheong SK, Leong CF, Seow HF
    Malays J Pathol, 2009 Dec;31(2):81-91.
    PMID: 20514850 MyJurnal
    Signal transduction pathways are constitutively expressed in leukaemic cells resulting in aberrant survival of the cells. It is postulated that in cells of chemo-sensitive patients, chemotherapy induces apoptotic signals leading to cell death while survival signals are maintained in cells of chemo-resistant patients. There is very little information currently, on the expression of these mediators in patients immediately after chemotherapy initiation. We examined the expression pattern of proinflammatory cytokines, signaling molecules of the PI3K and MAPK pathways molecules and death receptor, DR5 on paired samples at diagnosis and during chemotherapy in acute myeloid leukaemia patients treated with cytosine arabinoside and daunorubicin. The results were correlated with remission status one month after chemotherapy. We found that in chemo-sensitive patients, chemotherapy significantly increased the percentage of cases expressing TNF-alpha (p = 0.025, n = 9) and IL-6 (p = 0.002, n = 11) compared to chemo-resistant cases. We also observed an increased percentage of chemo-sensitive cases expressing DR5 and phosphorylated p38, and Jnk. Thus, expression of TNF-alpha, IL-6, DR5, phospho-p38 and phospho-Jnk may regulate cell death in chemo-sensitive cases. In contrast, a significantly higher percentage of chemo-resistant cases expressed phospho-Bad (p = 0.027, n = 9). IL-beta and IL-18 were also found to be higher in chemo-resistant cases at diagnosis and during chemotherapy. Thus, expression of various cellular molecules in leukaemic blasts during chemotherapy may be useful in predicting treatment outcome. These cellular molecules may also be potential targets for alternative therapy.
    Matched MeSH terms: Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
  4. Dyari HRE, Rawling T, Chen Y, Sudarmana W, Bourget K, Dwyer JM, et al.
    FASEB J, 2017 12;31(12):5246-5257.
    PMID: 28798154 DOI: 10.1096/fj.201700033R
    A saturated analog of the cytochrome P450-mediated ω-3-17,18-epoxide of ω-3-eicosapentaenoic acid (C20E) activated apoptosis in human triple-negative MDA-MB-231 breast cancer cells. This study evaluated the apoptotic mechanism of C20E. Increased cytosolic cytochrome c expression and altered expression of pro- and antiapoptotic B-cell lymphoma-2 proteins indicated activation of the mitochondrial pathway. Caspase-3 activation by C20E was prevented by pharmacological inhibition and silencing of the JNK and p38 MAP kinases (MAPK), upstream MAPK kinases MKK4 and MKK7, and the upstream MAPK kinase kinase apoptosis signal-regulating kinase 1 (ASK1). Silencing of the death receptor TNF receptor 1 (TNFR1), but not Fas, DR4, or DR5, and the adapters TRADD and TNF receptor-associated factor 2, but not Fas-associated death domain, prevented C20E-mediated apoptosis. B-cell lymphoma-2 homology 3-interacting domain death agonist (Bid) cleavage by JNK/p38 MAPK linked the extrinsic and mitochondrial pathways of apoptosis. In further studies, an antibody against the extracellular domain of TNFR1 prevented apoptosis by TNF-α but not C20E. These findings suggest that C20E acts intracellularly at TNFR1 to activate ASK1-MKK4/7-JNK/p38 MAPK signaling and to promote Bid-dependent mitochondrial disruption and apoptosis. Inin vivostudies, tumors isolated from C20E-treated nu/nu mice carrying MDA-MB-231 xenografts showed increased TUNEL staining and decreased Ki67 staining, reflecting increased apoptosis and decreased proliferation, respectively. ω-3-Epoxy fatty acids like C20E could be incorporated into treatments for triple-negative breast cancers.-Dyari, H. R. E., Rawling, T., Chen, Y., Sudarmana, W., Bourget, K., Dwyer, J. M., Allison, S. E., Murray, M. A novel synthetic analogue of ω-3 17,18-epoxyeicosatetraenoic acid activates TNF receptor-1/ASK1/JNK signaling to promote apoptosis in human breast cancer cells.
    Matched MeSH terms: Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links