Displaying all 3 publications

Abstract:
Sort:
  1. Ashley J, Shukor Y, Tothill IE
    Analyst, 2016 Nov 14;141(23):6463-6470.
    PMID: 27813538
    The development of molecularly imprinted polymer nanoparticles (MIP-NPs), which specifically bind biomolecules, is of great interest in the area of biosensors, sample purification, therapeutic agents and biotechnology. Polymerisation techniques such as precipitation polymerisation, solid phase synthesis and core shell surface imprinting have allowed for significant improvements to be made in developing MIP-NPs which specifically recognise proteins. However, the development of MIP-NPs for protein templates (targets) still require lengthy optimisation and characterisation using different ratios of monomers in order to control their size, binding affinity and specificity. In this work we successfully demonstrated that differential scanning fluorimetry (DSF) can be used to rapidly determine the optimum imprinting conditions and monomer composition required for MIP-NP design and polymerisation. This is based on the stability of the protein template and shift in apparent melting points (Tm) upon interaction with different functional acrylic monomers. The method allows for the characterisation of molecularly imprinted nanoparticles (MIP-NPs) due to the observed differences in melting point profiles between, protein-MIP-NPs complexes, pre-polymerisation mixtures and non-imprinted nanoparticles (NIP-NPs) without the need for prior purification. The technique is simple, rapid and can be carried out on most quantitative polymerase chain reaction (qPCR) thermal cyclers which have the required filters for SYPRO
    Matched MeSH terms: Solid-Phase Synthesis Techniques
  2. Zaharani L, Khaligh NG, Mihankhah T, Johan MR
    Mol Divers, 2021 Feb;25(1):323-332.
    PMID: 32361887 DOI: 10.1007/s11030-020-10092-4
    This paper presents the efficient synthesis of 2-amino-4H-benzo[b]pyrans using mesoporous poly-melamine-formaldehyde as a polymeric heterogeneous catalyst. According to the principals of green chemistry, the reaction was performed by the planetary ball milling process at ambient and neat conditions. The heterogeneous catalyst could be reused up to five runs with no reducing of catalytic efficiency. A variety of substituted 2-amino-4H-benzo[b]pyrans were obtained in good to excellent yields under eco-friendly conditions. Other advantages of the current methodology include short reaction time, wide substrate-scope, and use of a metal-free polymeric catalyst. Also, the current method avoids the use of hazardous reagents and solvents, tedious workup and multi-step purification. This work revealed that porous organic polymers containing Lewis base sites having acceptor-donner hydrogen bonding functional groups, and high porosity could play a vital role in the promotion of the one-pot multicomponent reactions in the solid-phase synthesis.
    Matched MeSH terms: Solid-Phase Synthesis Techniques/methods*
  3. Arumugam AC, Agharbaoui FE, Khazali AS, Yusof R, Abd Rahman N, Ahmad Fuaad AAH
    J Biomol Struct Dyn, 2020 Dec 31.
    PMID: 33382015 DOI: 10.1080/07391102.2020.1866074
    Dengue virus (DV) infection is one of the main public health concerns, affecting approximately 390 million people worldwide, as reported by the World Health Organization. Yet, there is no antiviral treatment for DV infection. Therefore, the development of potent and nontoxic anti-DV, as a complement for the existing treatment strategies, is urgently needed. Herein, we investigate a series of small peptides inhibitors of DV antiviral activity targeting the entry process as the promising strategy to block DV infection. The peptides were designed based on our previously reported peptide sequence, DN58opt (TWWCFYFCRRHHPFWFFYRHN), to identify minimal effective inhibitory sequence through molecular docking and dynamics studies. The in silico designed peptides were synthesized using conventional Fmoc solid-phase peptide synthesis chemistry, purified by RP-HPLC and characterized using LCMS. Later, they were screened for their antiviral activity. One of the peptides, AC 001, was able to reduce about 40% of DV plaque formation. This observation correlates well with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis - AC 001 showed the most favorable binding affinity through 60 ns simulations. Pairwise residue decomposition analysis has revealed four key residues that contributed to the binding of these peptides into the DV2 E protein pocket. This work identifies the minimal peptide sequence required to inhibit DV replication and explains the behavior observed on an atomic level using computational study.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Solid-Phase Synthesis Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links