Parkinson's disease is a common neurodegenerative disease affecting the movement and well-being of most elderly. The manifestations of Parkinson's disease often include resting tremor, stiffness, bradykinesia, and muscular rigidity. The typical hallmark of Parkinson's disease is the destruction of neurons in the substantia nigra and the presence of Lewy bodies in different compartments of the central nervous system. Due to various limitations to the currently available treatments, immunotherapies have emerged to be the new approach to Parkinson's disease treatment. This approach shows some positive outcomes on the efficacy by removing the aggregated species of alpha-synuclein, which is believed to be one of the causes of Parkinson's disease. In this review, an overview of how alpha-synuclein contributes to Parkinson's disease and the effects of a few new immunotherapeutic treatments, including BIIB054 (cinpanemab), MEDI1341, AFFITOPE, and PRX002 (prasinezumab) that are currently under clinical development, will be discussed.
Parkinson's disease is the most common neurodegenerative movement disorder with unclear etiology and only symptomatic treatment to date. Toward the development of novel disease-modifying agents, neurotrophic factors represent a reasonable and promising therapeutic approach. However, despite the robust preclinical evidence, clinical trials using glial-derived neurotrophic factor (GDNF) and neurturin have been unsuccessful. In this direction, the therapeutic potential of other trophic factors in PD and the elucidation of the underlying molecular mechanisms are of paramount importance. The liver growth factor (LGF) is an albumin-bilirubin complex acting as a hepatic mitogen, which also exerts regenerative effects on several extrahepatic tissues including the brain. Accumulating evidence suggests that intracerebral and peripheral administration of LGF can enhance the outgrowth of nigrostriatal dopaminergic axonal terminals; promote the survival, migration, and differentiation of neuronal stem cells; and partially protect against dopaminergic neuronal loss in the substantia nigra of PD animal models. In most studies, these effects are accompanied by improved motor behavior of the animals. Potential underlying mechanisms involve transient microglial activation, TNF-α upregulation, and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) and of the transcription factor cyclic AMP response-element binding protein (CREB), along with anti-inflammatory and antioxidant pathways. Herein, we summarize recent preclinical evidence on the potential role of LGF in PD pathogenesis, aiming to shed more light on the underlying molecular mechanisms and reveal novel therapeutic opportunities for this debilitating disease.
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by cardinal motor impairments, including akinesia and tremor, as well as by a host of non-motor symptoms, including both autonomic and cognitive dysfunction. PD is associated with a death of nigral dopaminergic neurons, as well as the pathological spread of Lewy bodies, consisting predominantly of the misfolded protein alpha-synuclein. To date, only symptomatic treatments, such as levodopa, are available, and trials aiming to cure the disease, or at least halt its progression, have not been successful. Wong et al. (2019) suggested that the lack of effective therapy against neurodegeneration in PD might be attributed to the fact that the molecular mechanisms standing behind the dopaminergic neuronal vulnerability are still a major scientific challenge. Understanding these molecular mechanisms is critical for developing effective therapy. Thirty-five years ago, Calne and William Langston (1983) raised the question of whether biological or environmental factors precipitate the development of PD. In spite of great advances in technology and medicine, this question still lacks a clear answer. Only 5-15% of PD cases are attributed to a genetic mutation, with the majority of cases classified as idiopathic, which could be linked to exposure to environmental contaminants. Rodent models play a crucial role in understanding the risk factors and pathogenesis of PD. Additionally, well-validated rodent models are critical for driving the preclinical development of clinically translatable treatment options. In this review, we discuss the mechanisms, similarities and differences, as well as advantages and limitations of different neurotoxin-induced rat models of PD. In the second part of this review, we will discuss the potential future of neurotoxin-induced models of PD. Finally, we will briefly demonstrate the crucial role of gene-environment interactions in PD and discuss fusion or dual PD models. We argue that these models have the potential to significantly further our understanding of PD.
Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD) with the dysregulation of microglial activity being tightly linked to dopaminergic degeneration. Fractalkine (CX3CL1), a chemokine mainly expressed by neurons, can modulate microglial activity through binding to its sole G-protein-coupled receptor (CX3CR1), expressed by microglia. Fractalkine/CX3CR1 signaling is one of the most important mediators of the communication between neurons and microglia, and its emerging role in neurodegenerative disorders including PD has been increasingly recognized. Pre-clinical evidence has revealed that fractalkine signaling axis exerts dual effects on PD-related inflammation and degeneration, which greatly depend on the isoform type (soluble or membrane-bound), animal model (mice or rats, toxin- or proteinopathy-induced), route of toxin administration, time course and specific brain region (striatum, substantia nigra). Furthermore, although existing clinical evidence is scant, it has been indicated that fractalkine may be possibly associated with PD progression, paving the way for future studies investigating its biomarker potential. In this review, we discuss recent evidence on the role of fractalkine/CX3CR1 signaling axis in PD pathogenesis, aiming to shed more light on the molecular mechanisms underlying the neuroinflammation commonly associated with the disease, as well as potential clinical and therapeutic implications.