Displaying all 11 publications

Abstract:
Sort:
  1. Najib NHM, Nies YH, Abd Halim SAS, Yahaya MF, Das S, Lim WL, et al.
    CNS Neurol Disord Drug Targets, 2020;19(5):386-399.
    PMID: 32640968 DOI: 10.2174/1871527319666200708124117
    Parkinson's Disease (PD) is one of the most common neurodegenerative disorders that affects the motor system, and includes cardinal motor symptoms such as resting tremor, cogwheel rigidity, bradykinesia and postural instability. Its prevalence is increasing worldwide due to the increase in life span. Although, two centuries since the first description of the disease, no proper cure with regard to treatment strategies and control of symptoms could be reached. One of the major challenges faced by the researchers is to have a suitable research model. Rodents are the most common PD models used, but no single model can replicate the true nature of PD. In this review, we aim to discuss another animal model, the zebrafish (Danio rerio), which is gaining popularity. Zebrafish brain has all the major structures found in the mammalian brain, with neurotransmitter systems, and it also possesses a functional blood-brain barrier similar to humans. From the perspective of PD research, the zebrafish possesses the ventral diencephalon, which is thought to be homologous to the mammalian substantia nigra. We summarize the various zebrafish models available to study PD, namely chemical-induced and genetic models. The zebrafish can complement the use of other animal models for the mechanistic study of PD and help in the screening of new potential therapeutic compounds.
    Matched MeSH terms: Substantia Nigra/physiopathology*
  2. El-Gamal M, Salama M, Collins-Praino LE, Baetu I, Fathalla AM, Soliman AM, et al.
    Neurotox Res, 2021 Jun;39(3):897-923.
    PMID: 33765237 DOI: 10.1007/s12640-021-00356-8
    Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by cardinal motor impairments, including akinesia and tremor, as well as by a host of non-motor symptoms, including both autonomic and cognitive dysfunction. PD is associated with a death of nigral dopaminergic neurons, as well as the pathological spread of Lewy bodies, consisting predominantly of the misfolded protein alpha-synuclein. To date, only symptomatic treatments, such as levodopa, are available, and trials aiming to cure the disease, or at least halt its progression, have not been successful. Wong et al. (2019) suggested that the lack of effective therapy against neurodegeneration in PD might be attributed to the fact that the molecular mechanisms standing behind the dopaminergic neuronal vulnerability are still a major scientific challenge. Understanding these molecular mechanisms is critical for developing effective therapy. Thirty-five years ago, Calne and William Langston (1983) raised the question of whether biological or environmental factors precipitate the development of PD. In spite of great advances in technology and medicine, this question still lacks a clear answer. Only 5-15% of PD cases are attributed to a genetic mutation, with the majority of cases classified as idiopathic, which could be linked to exposure to environmental contaminants. Rodent models play a crucial role in understanding the risk factors and pathogenesis of PD. Additionally, well-validated rodent models are critical for driving the preclinical development of clinically translatable treatment options. In this review, we discuss the mechanisms, similarities and differences, as well as advantages and limitations of different neurotoxin-induced rat models of PD. In the second part of this review, we will discuss the potential future of neurotoxin-induced models of PD. Finally, we will briefly demonstrate the crucial role of gene-environment interactions in PD and discuss fusion or dual PD models. We argue that these models have the potential to significantly further our understanding of PD.
    Matched MeSH terms: Substantia Nigra/drug effects; Substantia Nigra/metabolism; Substantia Nigra/pathology
  3. Angelopoulou E, Paudel YN, Piperi C
    Mol Neurobiol, 2021 Jul;58(7):3031-3042.
    PMID: 33608826 DOI: 10.1007/s12035-021-02326-9
    Parkinson's disease is the most common neurodegenerative movement disorder with unclear etiology and only symptomatic treatment to date. Toward the development of novel disease-modifying agents, neurotrophic factors represent a reasonable and promising therapeutic approach. However, despite the robust preclinical evidence, clinical trials using glial-derived neurotrophic factor (GDNF) and neurturin have been unsuccessful. In this direction, the therapeutic potential of other trophic factors in PD and the elucidation of the underlying molecular mechanisms are of paramount importance. The liver growth factor (LGF) is an albumin-bilirubin complex acting as a hepatic mitogen, which also exerts regenerative effects on several extrahepatic tissues including the brain. Accumulating evidence suggests that intracerebral and peripheral administration of LGF can enhance the outgrowth of nigrostriatal dopaminergic axonal terminals; promote the survival, migration, and differentiation of neuronal stem cells; and partially protect against dopaminergic neuronal loss in the substantia nigra of PD animal models. In most studies, these effects are accompanied by improved motor behavior of the animals. Potential underlying mechanisms involve transient microglial activation, TNF-α upregulation, and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) and of the transcription factor cyclic AMP response-element binding protein (CREB), along with anti-inflammatory and antioxidant pathways. Herein, we summarize recent preclinical evidence on the potential role of LGF in PD pathogenesis, aiming to shed more light on the underlying molecular mechanisms and reveal novel therapeutic opportunities for this debilitating disease.
    Matched MeSH terms: Substantia Nigra/drug effects; Substantia Nigra/metabolism
  4. Salama M, El-Desouky S, Alsayed A, El-Hussiny M, Moustafa A, Taalab Y, et al.
    Metab Brain Dis, 2019 02;34(1):367-372.
    PMID: 30392038 DOI: 10.1007/s11011-018-0334-z
    Leigh syndrome (LS) is one of the most puzzling mitochondrial disorders, which is also known as subacute necrotizing encephalopathy. It has an incidence of 1 in 77,000 live births worldwide with poor prognosis. Currently, there is a poor understanding of the underlying pathophysiological mechanisms of the disease without any available effective treatment. Hence, the inevitability for developing suitable animal and cellular models needed for the development of successful new therapeutic modalities. In this short report, we blocked FOXRED1 gene with small interfering RNA (siRNA) using C57bl/6 mice. Results showed neurobehavioral changes in the injected mice along with parallel degeneration in corpus striatum and sparing of the substantia nigra similar to what happen in Leigh syndrome cases. FOXRED1 blockage could serve as a new animal model for Leigh syndrome due to defective CI, which echoes damage to corpus striatum and affection of the central dopaminergic system in this disease. Further preclinical studies are required to validate this model.
    Matched MeSH terms: Substantia Nigra/pathology*
  5. Teng JS, Ooi YY, Chye SM, Ling APK, Koh RY
    CNS Neurol Disord Drug Targets, 2021;20(9):802-813.
    PMID: 34042040 DOI: 10.2174/1871527320666210526160926
    Parkinson's disease is a common neurodegenerative disease affecting the movement and well-being of most elderly. The manifestations of Parkinson's disease often include resting tremor, stiffness, bradykinesia, and muscular rigidity. The typical hallmark of Parkinson's disease is the destruction of neurons in the substantia nigra and the presence of Lewy bodies in different compartments of the central nervous system. Due to various limitations to the currently available treatments, immunotherapies have emerged to be the new approach to Parkinson's disease treatment. This approach shows some positive outcomes on the efficacy by removing the aggregated species of alpha-synuclein, which is believed to be one of the causes of Parkinson's disease. In this review, an overview of how alpha-synuclein contributes to Parkinson's disease and the effects of a few new immunotherapeutic treatments, including BIIB054 (cinpanemab), MEDI1341, AFFITOPE, and PRX002 (prasinezumab) that are currently under clinical development, will be discussed.
    Matched MeSH terms: Substantia Nigra/drug effects
  6. Mohamad Najib NH, Yahaya MF, Das S, Teoh SL
    Int J Neurosci, 2023 Dec;133(8):822-833.
    PMID: 34623211 DOI: 10.1080/00207454.2021.1990916
    INTRODUCTION: Parkinson's disease (PD) is the second most common neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Metallothionein has been shown to act as a neuroprotectant in various brain injury. Thus, this study aims to identify the effects of full-length human metallothionein 2 peptide (hMT2) in paraquat-induced brain injury in the zebrafish.

    METHODOLOGY: A total of 80 adult zebrafish were divided into 4 groups namely control, paraquat-treated, pre-hMT2-treated, and post-hMT2-treated groups. Fish were treated with paraquat intraperitoneally every 3 days for 15 days. hMT2 were injected intracranially on day 0 (pre-treated group) and day 16 (post-treated group). Fish were sacrificed on day 22 and the brains were collected for qPCR, ELISA and immunohistochemistry analysis.

    RESULTS: qPCR analysis showed that paraquat treatment down-regulated the expression of genes related to dopamine activity and biosynthesis (dat and th1) and neuroprotective agent (bdnf). Paraquat treatment also up-regulated the expression of the mt2, smtb and proinflammatory genes (il-1α, il-1β, tnf-α and cox-2). hMT2 treatment was able to reverse the effects of paraquat. Lipid peroxidation decreased in the paraquat and pre-hMT2-treated groups. However, lipid peroxidation increased in the post-hMT2-treated group. Paraquat treatment also led to a reduction of dopaminergic neurons while their numbers showed an increase following hMT2 treatment.

    CONCLUSION: Paraquat has been identified as one of the pesticides that can cause the death of dopaminergic neurons and affect dopamine biosynthesis. Treatment with exogenous hMT2 could reverse the effects of paraquat in the zebrafish brain.

    Matched MeSH terms: Substantia Nigra/metabolism
  7. Angelopoulou E, Paudel YN, Shaikh MF, Piperi C
    Pharmacol Res, 2020 08;158:104930.
    PMID: 32445958 DOI: 10.1016/j.phrs.2020.104930
    Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD) with the dysregulation of microglial activity being tightly linked to dopaminergic degeneration. Fractalkine (CX3CL1), a chemokine mainly expressed by neurons, can modulate microglial activity through binding to its sole G-protein-coupled receptor (CX3CR1), expressed by microglia. Fractalkine/CX3CR1 signaling is one of the most important mediators of the communication between neurons and microglia, and its emerging role in neurodegenerative disorders including PD has been increasingly recognized. Pre-clinical evidence has revealed that fractalkine signaling axis exerts dual effects on PD-related inflammation and degeneration, which greatly depend on the isoform type (soluble or membrane-bound), animal model (mice or rats, toxin- or proteinopathy-induced), route of toxin administration, time course and specific brain region (striatum, substantia nigra). Furthermore, although existing clinical evidence is scant, it has been indicated that fractalkine may be possibly associated with PD progression, paving the way for future studies investigating its biomarker potential. In this review, we discuss recent evidence on the role of fractalkine/CX3CR1 signaling axis in PD pathogenesis, aiming to shed more light on the molecular mechanisms underlying the neuroinflammation commonly associated with the disease, as well as potential clinical and therapeutic implications.
    Matched MeSH terms: Substantia Nigra/drug effects; Substantia Nigra/metabolism
  8. Farah Wahida Ibrahim, Umi Noraashikin Zainudin, Mazlyzam Abdul Latif, Asmah Hamid
    Sains Malaysiana, 2018;47:2337-2347.
    Zingiber zerumbet has been traditionally used as an anti-inflammation and antioxidant agent. The present study
    investigates the neuroprotective effects of ethyl acetate extract of Z. zerumbet against oxidative stress on paraquat
    (PQ)-induced Parkinsonism in rats. Forty male Sprague-Dawley rats were divided into five groups: Negative control
    (normal saline), positive control (N-acetylcysteine, NAC 20 mg/kg + PQ 10 mg/kg), PQ only, 200 mg/kg Z. zerumbet +
    PQ and 400 mg/kg Z. zerumbet + PQ. The extract was given orally for 19 consecutive days and PQ was administered
    intraperitoneally on day 8-12th of the treatment regime. Both serum and fresh brains containing substantia nigra (SN)
    region were taken for biochemical and histological analysis. Administration of both 200 and 400 mg/kg ethyl acetate
    Z. zerumbet extracts to the PQ-treated groups have resulted in: Decreased levels of MDA and PC in the SN homogenates;
    and increased SOD, GPx; and CAT activities in the SN and serum. Overall, ethyl acetate extract of Z. zerumbet reduced
    oxidative stress in the SN of PQ-induced neuronal damages, therefore, has the potential to be developed as a preventive
    agent for neurodegenerative disorders caused by environmental toxins.
    Matched MeSH terms: Substantia Nigra
  9. Perera J, Tan JH, Jeevathayaparan S, Chakravarthi S, Haleagrahara N
    Cell Biosci, 2011;1(1):12.
    PMID: 21711768 DOI: 10.1186/2045-3701-1-12
    Haloperidol is an antipsychotic drug that exerts its' antipsychotic effects by inhibiting dopaminergic neurons. Although the exact pathophysiology of haloperidol extrapyramidal symptoms are not known, the role of reactive oxygen species in inducing oxidative stress has been proposed as one of the mechanisms of prolonged haloperidol-induced neurotoxicity. In the present study, we evaluate the protective effect of alpha lipoic acid against haloperidol-induced oxidative stress in the rat brain. Sprague Dawley rats were divided into control, alpha lipoic acid alone (100 mg/kg p.o for 21 days), haloperidol alone (2 mg/kg i.p for 21 days), and haloperidol with alpha lipoic acid groups (for 21 days). Haloperidol treatment significantly decreased levels of the brain antioxidant enzymes super oxide dismutase and glutathione peroxidase and concurrent treatment with alpha lipoic acid significantly reversed the oxidative effects of haloperidol. Histopathological changes revealed significant haloperidol-induced damage in the cerebral cortex, internal capsule, and substantia nigra. Alpha lipoic acid significantly reduced this damage and there were very little neuronal atrophy. Areas of angiogenesis were also seen in the alpha lipoic acid-treated group. In conclusion, the study proves that alpha lipoic acid treatment significantly reduces haloperidol-induced neuronal damage.
    Matched MeSH terms: Substantia Nigra
  10. Nies YH, Mohamad Najib NH, Lim WL, Kamaruzzaman MA, Yahaya MF, Teoh SL
    Front Neurosci, 2021;15:660379.
    PMID: 33994934 DOI: 10.3389/fnins.2021.660379
    Parkinson's disease (PD) is a severely debilitating neurodegenerative disease, affecting the motor system, leading to resting tremor, cogwheel rigidity, bradykinesia, walking and gait difficulties, and postural instability. The severe loss of dopaminergic neurons in the substantia nigra pars compacta causes striatal dopamine deficiency and the presence of Lewy bodies indicates a pathological hallmark of PD. Although the current treatment of PD aims to preserve dopaminergic neurons or to replace dopamine depletion in the brain, it is notable that complete recovery from the disease is yet to be achieved. Given the complexity and multisystem effects of PD, the underlying mechanisms of PD pathogenesis are yet to be elucidated. The advancement of medical technologies has given some insights in understanding the mechanism and potential treatment of PD with a special interest in the role of microRNAs (miRNAs) to unravel the pathophysiology of PD. In PD patients, it was found that striatal brain tissue and dopaminergic neurons from the substantia nigra demonstrated dysregulated miRNAs expression profiles. Hence, dysregulation of miRNAs may contribute to the pathogenesis of PD through modulation of PD-associated gene and protein expression. This review will discuss recent findings on PD-associated miRNAs dysregulation, from the regulation of PD-associated genes, dopaminergic neuron survival, α-synuclein-induced inflammation and circulating miRNAs. The next section of this review also provides an update on the potential uses of miRNAs as diagnostic biomarkers and therapeutic tools for PD.
    Matched MeSH terms: Substantia Nigra
  11. Solayman M, Islam MA, Alam F, Khalil MI, Kamal MA, Gan SH
    Curr Drug Metab, 2017;18(1):50-61.
    PMID: 27396919 DOI: 10.2174/1389200217666160709204826
    Parkinson's disease (PD) is characterized by neurodegeneration and a progressive functional impairment of the midbrain nigral dopaminergic neurons. The cause remains unknown; however, several pathological processes and central factors, such as protein aggregation, mitochondrial dysfunction, iron accumulation, neuroinflammation and oxidative stress, have been reported. The current treatment method primarily targets symptoms by using anti-Parkinson drugs such as levodopa, carbidopa, dopamine (DA) agonists, monoamine oxidase type B inhibitors and anticholinergics to replace DA. When drug therapy is not satisfactory, surgical treatments are recommended. Unfortunately, the existing conventional strategies that target PD are associated with numerous side effects and possess an economic burden. Therefore, novel therapeutic approaches that regulate the pathways leading to neuronal death and dysfunction are necessary. For many years, nature has provided the primary resource for the discovery of potential therapeutic agents. Remarkably, many natural products from medicinal plants, fruits and vegetables have been demonstrated to be efficacious anti-Parkinson agents. These products possess neuroprotective properties as a result of not only their wellrecognized anti-oxidative and anti-inflammatory activities but also their inhibitory roles regarding iron accumulation, protein misfolding and the maintenance of proteasomal degradation, as well as mitochondrial homeostasis. The aim of this review is to report the available anti-Parkinson agents based on natural products and delineate their therapeutic actions, which act on various pathways. Overall, this review emphasizes the types of natural products that are potential future resources in the treatment of PD as novel regimens or supplementary agents.
    Matched MeSH terms: Substantia Nigra
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links