Displaying all 12 publications

Abstract:
Sort:
  1. Rao PV, Gan SH
    Curr Drug Metab, 2015;16(5):371-5.
    PMID: 25429672 DOI: 10.2174/1389200215666141125120215
    Nanotechnology is a field encompassing nanostructures, nanomaterials and nanoparticles, which are of increasing importance to researchers and industrial players alike. Nanotechnology addresses the construction and consumption of substances and devices on the nanometer scale. Nanomedicine is a new field that combines nanotechnology with medicine to boost human health care. Nanomedicine is an interdisciplinary field that includes various areas of biology, chemistry, physics and engineering. The most important problems related to diabetes management, such as self-monitoring of blood glucose levels and insulin injections, can now be conquered due to progress in nanomedicine, which offers glucose nanosensors, the layer-by-layer technique, carbon nanotubes, quantum dots, oral insulins, microspheres, artificial pancreases and nanopumps. In this review, the key methodological and scientific characteristics of nanomedicine related to diabetes treatment, glucose monitoring and insulin administration are discussed.
  2. Rehman MU, Farooq A, Ali R, Bashir S, Bashir N, Majeed S, et al.
    Curr Drug Metab, 2020;21(6):436-465.
    PMID: 32562521 DOI: 10.2174/1389200221666200620204914
    Glycyrrhiza glabra L. (Family: Fabaceae) is one of the important traditional medicinal plant used extensively in folk medicine. It is known for its ethnopharmacological value in curing a wide variety of ailments. Glycyrrhizin, an active compound of G. glabra, possesses anti-inflammatory activity due to which it is mostly used in traditional herbal medicine for the treatment and management of chronic diseases. The present review is focused extensively on the pharmacology, pharmacokinetics, toxicology, and potential effects of Glycyrrhizic Acid (GA). A thorough literature survey was conducted to identify various studies that reported on the GA on PubMed, Science Direct and Google Scholar.
  3. Solayman M, Islam MA, Alam F, Khalil MI, Kamal MA, Gan SH
    Curr Drug Metab, 2017;18(1):50-61.
    PMID: 27396919 DOI: 10.2174/1389200217666160709204826
    Parkinson's disease (PD) is characterized by neurodegeneration and a progressive functional impairment of the midbrain nigral dopaminergic neurons. The cause remains unknown; however, several pathological processes and central factors, such as protein aggregation, mitochondrial dysfunction, iron accumulation, neuroinflammation and oxidative stress, have been reported. The current treatment method primarily targets symptoms by using anti-Parkinson drugs such as levodopa, carbidopa, dopamine (DA) agonists, monoamine oxidase type B inhibitors and anticholinergics to replace DA. When drug therapy is not satisfactory, surgical treatments are recommended. Unfortunately, the existing conventional strategies that target PD are associated with numerous side effects and possess an economic burden. Therefore, novel therapeutic approaches that regulate the pathways leading to neuronal death and dysfunction are necessary. For many years, nature has provided the primary resource for the discovery of potential therapeutic agents. Remarkably, many natural products from medicinal plants, fruits and vegetables have been demonstrated to be efficacious anti-Parkinson agents. These products possess neuroprotective properties as a result of not only their wellrecognized anti-oxidative and anti-inflammatory activities but also their inhibitory roles regarding iron accumulation, protein misfolding and the maintenance of proteasomal degradation, as well as mitochondrial homeostasis. The aim of this review is to report the available anti-Parkinson agents based on natural products and delineate their therapeutic actions, which act on various pathways. Overall, this review emphasizes the types of natural products that are potential future resources in the treatment of PD as novel regimens or supplementary agents.
  4. Yan P, Eng OC, Yu CJ
    Curr Drug Metab, 2018;19(11):917-929.
    PMID: 29804525 DOI: 10.2174/1389200219666180528090237
    BACKGROUND: Cytochrome P450 2S1 (CYP2S1) is one of the 'orphan' CYPs, which is expressed primarily among extra-hepatic tissues and it is inducible by dioxin. Although the contribution of extra-hepatic CYPs in drug metabolism is considered less significant, they play more important roles in leading to in situ toxicity in organs with higher expression.

    METHOD: A non-systemic search was performed to review articles relevant to CYP2S1 in literature. This review will update the findings related to the expression and regulation of CYP2S1 gene and protein, substrate profiles and metabolism mechanisms, genetic polymorphisms, and their association with diseases.

    RESULTS: The expression of CYP2S1 was mainly in the epithelium of portal of entry organs such as respiratory and gastrointestinal tract. Aryl Hydrocarbon Receptor (AHR) is believed to be partly involved in the induction of CYP2S1. CYP2S1 was found to activate and deactivate pro-drugs which resulted in toxicity and detoxification of carcinogens. The current knowledge of the endogenous functions of CYP2S1 is largely related to cell proliferation and lipid metabolisms. Several polymorphic alleles of CYP2S1 have been reported and documented to date.

    CONCLUSION: Molecular-based investigations should be performed to better understand the regulation mechanism of CYP2S1 in various cells and tissues. It is pivotal to establish optimum expression and incubation systems in vitro to elucidate the substrate specificity of CYP2S1 and characterise the genetic consequences of variant CYP2S1 in vitro.

  5. Aziz ZAA, Ahmad A, Setapar SHM, Karakucuk A, Azim MM, Lokhat D, et al.
    Curr Drug Metab, 2018;19(13):1100-1110.
    PMID: 30039757 DOI: 10.2174/1389200219666180723144850
    BACKGROUND: Essential oils are liquid extracts from aromatic plants, which have numerous applications in multiple industries. There are a variety of methods used for the extraction of essential oils, with each method exhibiting certain advantages and determining the biological and physicochemical properties of the extracted oils. Essential oils from different plant species contain more than 200 constituents which are comprised of volatile and non-volatile components. The application of essential oils as antimicrobial, anticancer, anti-inflammatory and anti-viral agents is due to their effective and efficient properties, inter alia.

    METHOD: Several advanced (supercritical fluid extraction, subcritical extraction liquid, solvent-free microwave extraction) and conventional (hydrodistillation, steam distillation, hydrodiffusion, solvent extraction) methods have been discussed for the extraction of essential oils. Advanced methods are considered as the most promising extraction techniques due to less extraction time, low energy consumption, low solvent used and less carbon dioxide emission.

    CONCLUSION: This manuscript reviewed the major research studies in the field and discussed several research findings on the chemical composition of essential oils, methods of oil extraction, and application of these oils in pharmaceutical and therapeutic fields. These essential oils can be used as anticancer, antimicrobial, antiviral, and as skin permeation enhancer agents.

  6. Khalivulla SI, Mohammed A, Sirajudeen KNS, Shaik MI, Ye W, Korivi M
    Curr Drug Metab, 2019;20(12):946-957.
    PMID: 31744445 DOI: 10.2174/1389200220666191118102616
    BACKGROUND: Typhonium is the largest genus in the Araceae family (~70 species), distributed in South Asia, Southeast Asia and Australia. Typhonium is well-known for its ethnopharmacological uses, and Southeast Asians consider it as an alternative medicine to treat cancer. This review elucidated the confirmed chemical structures of the isolated compounds of Typhonium and emphasized on their anticancer activities against various human cancer cells.

    METHODS: Among several species, Typhonium blumei, T. flagelliforme, T. divaricatum and T. giganteum were extensively studied due to the presence of a class of secondary metabolites. All the available reports on Typhonium were included and discussed in this article.

    RESULTS: Until now several groups of compounds, namely amino acids (1, 2), cinnamic acid (3), fatty acids (4-14), glycerol derivatives (15-18) and cerebrosides (19-34), flavonoids (35), hydantoins (36-38), lignin monomers (39-44), nucleobases (45-48), pheophorbides (49-52), phthalate (53), terpene and steroids (54-59) and vitamins (60, 61) were isolated and characterized from Typhonium. These phytochemicals were investigated for their anticancer properties, and results confirmed the promising growth inhibitory effect and anticancer activities against human lung, breast, prostate and colon cancer cells. The anticancer activity of these compounds appears to be mediated through the induction of apoptotic cell death. These phytochemicals further reported to exhibit other pharmacological efficacies, including anti-inflammatory, antioxidant, antiviral, anti-allergic, neuroprotective and hepato-protective properties.

    CONCLUSION: This is the first review to summarize the anticancer properties of all isolated compounds of Typhonium genus with confirmed chemical structures. Further advanced studies are necessary to establish the detailed signaling pathways that are involved in the anticancer property of the compounds.

  7. Raman S, Mahmood S, Hilles AR, Javed MN, Azmana M, Al-Japairai KAS
    Curr Drug Metab, 2020;21(9):649-660.
    PMID: 32384025 DOI: 10.2174/1389200221666200508074348
    BACKGROUND: Blood-brain barrier (BBB) plays a most hindering role in drug delivery to the brain. Recent research comes out with the nanoparticles approach, is continuously working towards improving the delivery to the brain. Currently, polymeric nanoparticle is extensively involved in many therapies for spatial and temporal targeted areas delivery.

    METHODS: We did a non-systematic review, and the literature was searched in Google, Science Direct and PubMed. An overview is provided for the formulation of polymeric nanoparticles using different methods, effect of surface modification on the nanoparticle properties with types of polymeric nanoparticles and preparation methods. An account of different nanomedicine employed with therapeutic agent to cross the BBB alone with biodistribution of the drugs.

    RESULTS: We found that various types of polymeric nanoparticle systems are available and they prosper in delivering the therapeutic amount of the drug to the targeted area. The effect of physicochemical properties on nanoformulation includes change in their size, shape, elasticity, surface charge and hydrophobicity. Surface modification of polymers or nanocarriers is also vital in the formulation of nanoparticles to enhance targeting efficiency to the brain.

    CONCLUSION: More standardized methods for the preparation of nanoparticles and to assess the relationship of surface modification on drug delivery. While the preparation and its output like drug loading, particle size, and charge, permeation is always conflicted, so it requires more attention for the acceptance of nanoparticles for brain delivery.

  8. Shah A, Ong CE, Pan Y
    Curr Drug Metab, 2021;22(9):698-708.
    PMID: 34325630 DOI: 10.2174/1389200222666210729115151
    BACKGROUND: In recent years, the significance of cytochrome P450 enzymes (CYPs) has expanded beyond their role in the liver. Factors such as genetics, environmental toxins, drug biotransformation and underlying diseases mediate the expression of these enzymes. Among the CYP enzymes, CYP2E1, a well-recognized monooxygenase enzyme involved in the metabolism of various endogenous and exogenous substances, plays a crucial role in the brain concerning the development of Parkinson's disease. The expression of CYP2E1 varies in different brain regions making certain regions more vulnerable than others. CYP2E1 expression is inducible which generates tissuedamaging radicals leading to oxidative stress, mitochondrial dysfunction and ultimately neurodegeneration.

    OBJECTIVE: Less is understood about the role of CYP2E1 in the central nervous system, therefore the purpose of the study was to investigate the relationship between the expression and activity of CYP2E1 enzyme relevant to Parkinson's disease and to identify whether an increase in the expression of CYP2E1 is associated with neurodegeneration.

    METHODS: The objectives of the study were achieved by implicating an unsystematic integrative literature review approach in which the literature was qualitatively analysed, critically evaluated and a new theory with an overall view of the mechanism was presented.

    RESULTS: The contribution of CYP2E1 in the development of Parkinson's disease was found to be significant as the negative effects of CYP2E1 overshadowed its protective detoxifying role.

    CONCLUSION: Overexpression of CYP2E1 seems detrimental to dopaminergic neurons, therefore, to overcome this, a synthetic biochemical is required, which paves the way for further research and development of valuable biomolecules.

  9. Aziz ZABA, Ahmad A, Mohd-Setapar SH, Hassan H, Lokhat D, Kamal MA, et al.
    Curr Drug Metab, 2017;18(1):16-29.
    PMID: 27654898 DOI: 10.2174/1389200217666160921143616
    In clinical studies, drugs with hydrophobic characteristic usually reflect low bioavailability, poor drug absorption, and inability to achieve the therapeutic concentration in blood. The production of poor solubility drugs, in abundance, by pharmaceutical industries calls for an urgent need to find the alternatives for resolving the above mentioned shortcomings. Poor water solubility drugs loaded with polymeric micelle seem to be the best alternative to enhance drugs solubility and bioavailability. Polymeric micelle, formed by self-assembled of amphiphilic block copolymers in aqueous environment, functioned as solubilizing agent for hydrophobic drug. This review discusses the fundamentals of polymeric micelle as drug carrier through representative literature, and demonstrates some applications in various clinical trials. The structure, characteristic, and formation of polymeric micelle have been discussed firstly. Next, this manuscript focuses on the potential of polymeric micelles as drug vehicle in oral, transdermal routes, and anti-cancer agent. Several results from previous studies have been reproduced in this review in order to prove the efficacy of the micelles in delivering hydrophobic drugs. Lastly, future strategies to broaden the application of polymeric micelles in pharmaceutical industries have been highlighted.
  10. AlMatar M, AlMandeal H, Makky EA, Kayar B, Yarar E, Var I, et al.
    Curr Drug Metab, 2017;18(3):207-224.
    PMID: 27928943 DOI: 10.2174/1389200217666161207161212
    BACKGROUND: Vitamin D, a molecular precursor of the potent steroid hormone calcitriol, has crucial functions and roles in physiology and pathophysiology. Tellingly, calcitriol has been shown to regulate various cellular signalling networks and cascades that have crucial role in cancer biology and diagnostics. Mounting lines of evidences from previous clinical and preclinical investigations indicate that the deficiency of vitamin D may contribute to the carcinogenesis risk. Concomitantly, recent reports suggested that significant reduction in the cancer occurrence and progression is more likely to appear after vitamin D supplementation. Furthermore, a pivotal role functioned by vitamin D in cardiovascular physiology indicates that the deficiency of vitamin D is significantly correlated with enhanced prevalence of stroke, hypertension and myocardial infarction. Notably, vitamin D status is more likely to be used as a lifestyle biomarker, since poor and unhealthy lifestyles are correlated with the deficiency of vitamin D, a feature which may result in cardiovascular complications. Moreover, recent reports revealed that the effect of vitamin D is to cover not only cardiovascular system but also skeletal system.

    OBJECTIVE: Herein, we are highlighting the recent knowledge of vitamin D roles and functions with respect to pathophysiological disorders such as cancer, cardiovascular diseases, rheumatoid arthritis (RA) and debate the potential avails of vitamin D on slowing cancer, cardiovascular disease and RA progression.

    CONCLUSION: The findings of this review confirm that the importance of vitamin D metabolites or analogues which can provide a helpful platform to target some kinds of cancer, particularly when used in combination with existing therapies. Moreover, the correlation between vitamin D deficiencies with cardiovascular diseases and rheumatoid arthritis (RA) progression might suggest a pivotal role of vitamin D in either initiation or progression of these diseases.

  11. Balakumar P, Alqahtani T, Alqahtani A, Lakshmiraj RS, Singh G, Rupeshkumar M, et al.
    Curr Drug Metab, 2022;23(11):897-904.
    PMID: 36017834 DOI: 10.2174/1389200223666220825101212
    BACKGROUND: Curcumin is a polyphenolic compound derived from rhizomes of Curcuma longa, the golden spice. Curcumin has drawn much attention in recent years of biomedical research owing to its wide variety of biologic and pharmacologic actions. It exerts antiproliferative, antifibrogenic, anti-inflammatory, and antioxidative effects, among various imperative pharmacologic actions. In spite of its well-documented efficacies against numerous disease conditions, the limited systemic bioavailability of curcumin is a continuing concern. Perhaps, the poor bioavailability of curcumin may have curtailed its significant development from kitchen to clinic as a potential therapeutic agent. Subsequently, there have been a considerable number of studies over decades researching the scientific basis of curcumin's reduced bioavailability and eventually improvement of its bioavailability employing a variety of therapeutic approaches, for instance, in combination with piperine, the bio-active constituent of black pepper. Piperine has remarkable potential to modulate the functional activity of metabolic enzymes and drug transporters, and thus there has been a great interest in the therapeutic application of this widely used spice as alternative medicine and bioavailability enhancer. Growing body of evidence supports the synergistic potential of curcumin against numerous pathologic conditions when administered with piperine.

    CONCLUSION: In light of current challenges, the major concern pertaining to poor systemic bioavailability of curcumin, its improvement, especially in combination with piperine, and the necessity of additional research in this setting are together described in this review. Besides, the recent advances in the potential therapeutic rationale and efficacy of curcumin-piperine combination, a promising duo, against various pathologic conditions are delineated.

  12. Varshney P, Sharma V, Yadav D, Kumar Y, Singh A, Kagithala NR, et al.
    Curr Drug Metab, 2023;24(12):787-802.
    PMID: 38141188 DOI: 10.2174/0113892002266408231207150547
    BACKGROUND: Cancer drug resistance remains a difficult barrier to effective treatment, necessitating a thorough understanding of its multi-layered mechanism.

    OBJECTIVE: This study aims to comprehensively explore the diverse mechanisms of cancer drug resistance, assess the evolution of resistance detection methods, and identify strategies for overcoming this challenge. The evolution of resistance detection methods and identification strategies for overcoming the challenge.

    METHODS: A comprehensive literature review was conducted to analyze intrinsic and acquired drug resistance mechanisms, including altered drug efflux, reduced uptake, inactivation, target mutations, signaling pathway changes, apoptotic defects, and cellular plasticity. The evolution of mutation detection techniques, encompassing clinical predictions, experimental approaches, and computational methods, was investigated. Strategies to enhance drug efficacy, modify pharmacokinetics, optimizoptimizee binding modes, and explore alternate protein folding states were examined.

    RESULTS: The study comprehensively overviews the intricate mechanisms contributing to cancer drug resistance. It outlines the progression of mutation detection methods and underscores the importance of interdisciplinary approaches. Strategies to overcome drug resistance challenges, such as modulating ATP-binding cassette transporters and developing multidrug resistance inhibitors, are discussed. The study underscores the critical need for continued research to enhance cancer treatment efficacy.

    CONCLUSION: This study provides valuable insights into the complexity of cancer drug resistance mechanisms, highlights evolving detection methods, and offers potential strategies to enhance treatment outcomes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links