Displaying publications 321 - 340 of 1064 in total

Abstract:
Sort:
  1. Shaari NF, Abdul-Rahim AS, Afandi SHM
    Environ Sci Pollut Res Int, 2020 Jul;27(19):24242-24252.
    PMID: 32306253 DOI: 10.1007/s11356-020-08662-y
    Recently, greenhouse gas (GHG) emissions become the hottest issue in the transportation sector. The air transport sector contributes approximately 2% of global greenhouse gas emissions. Reducing greenhouse gas emissions from aircraft is one of the issues taken seriously by the transportation sector. However, air transportation has implemented several ways to reduce carbon emissions, and one of them is by launching a carbon offset program. This study estimates the willingness among Malaysian airline passengers to pay for a carbon offset program to have a better environmental performance. Using a double-bounded dichotomous choice of contingent valuation method (CVM) estimates how much air passengers would be willing to pay to offset carbon emissions generated by their travel. The results obtained from this study suggest that the additional fee for airline tickets will be RM86.00 can be charged to have a better environmental performance.
  2. Tarazkar MH, Dehbidi NK, Ozturk I, Al-Mulali U
    Environ Sci Pollut Res Int, 2021 Jul;28(26):33722-33734.
    PMID: 32314289 DOI: 10.1007/s11356-020-08880-4
    Rapid evolution in the population age structure of the Middle East countries has major economic, social, and environmental outcomes. Therefore, to fill the gap in the previous literatures, in this study, the effect of age structure on environmental degradation was investigated in the Middle East region. To achieve this goal, a panel data of 10 Middle East countries were examined over the period of 1990 to 2014. Moreover, the carbon dioxide emission per capita was used as an environmental pollution index in this study. According to the stationary property of the variables, small sample size data, and the assumptions of the model, the panel autoregressive distributed lag method of mean group, pooled mean group, and dynamic fixed effect estimators were investigated in this study. The empirical results implied that the pooled mean group model emerged as the most efficient among the three estimators. Also, results revealed that the age structure have a significant relationship with environmental pollution. Children and working age population have a positive elasticity, whereas elderly people have negative elasticity. Furthermore, the results showed that the working age population has the greatest explanatory power on the carbon emissions. Also, the relationship between per capita energy consumption and gross domestic product per capita with air pollution was positive. Overall, the empirical results showed that any attempt to decrease carbon dioxide emissions in the Middle East region should consider the population age structure.
  3. Shad MK, Lai FW, Shamim A, McShane M
    Environ Sci Pollut Res Int, 2020 Jun;27(18):22511-22522.
    PMID: 32319056 DOI: 10.1007/s11356-020-08398-9
    This paper empirically investigates the impact of overall sustainability reporting as well as its components (economic, environmental, and social sustainability reporting) on the cost of debt and equity capital for Malaysian oil and gas companies. The data was collected from 41 publicly listed oil and gas companies in Malaysia for the period from 2008 to 2017. Qualitative information was gathered for sustainability reporting and then converted into quantitative form by assigning weights according to the extent of reporting. The cost of capital information was sourced through Thomson Reuters Datastream. Panel data analysis was employed using generalized least square (GLS) random effects regression to examine the relationship between sustainability reporting and cost of capital. Firm reputation, size, and profitability were included as control variables. The findings indicate that overall sustainability reporting and one component, economic sustainability reporting, reduce both cost of debt and cost of equity. However, environmental sustainability reporting reduces only the cost of debt but does not reduce the cost of equity. Social sustainability reporting shows no effect on the cost of debt or equity. The findings of this paper should be useful for regulators, legislators, shareholders, creditors, and practitioners in pursuing sustainability practices that not only improve economic and environmental performance but also enhance overall performance by reducing the cost of capital. The results of the paper highlight that companies investing in sustainability can generate positive value through the enhancement of reputational capital. This study is the first to empirically investigate the relationship between overall sustainability reporting, including its three components, and the cost of both debt and equity capital.
  4. Rashidi NA, Bokhari A, Yusup S
    Environ Sci Pollut Res Int, 2021 Jul;28(26):33967-33979.
    PMID: 32333352 DOI: 10.1007/s11356-020-08823-z
    The volumetric adsorption kinetics of carbon dioxide (CO2) onto the synthesized palm kernel shell activated carbon via single-stage CO2 activation and commercial Norit® activated carbon were carried out at an initial pressure of approximately 1 bar at three different temperatures of 25, 50, and 100 °C. The experimental kinetics data were modelled by using the Lagergren's pseudo-first-order model and pseudo-second-order model. Comparing these two, the non-linear pseudo-second-order kinetics model presented a better fit towards CO2 adsorption for both adsorbents, owing to its closer coefficient of determination (R2) to unity, irrespective of the adsorption temperature. In addition, kinetics analysis showed that the corresponding kinetics coefficient (rate of adsorption) of both activated carbons increased with respect to adsorption temperature, and thereby, it indicated higher mobility of CO2 adsorbates at an elevated temperature. Nevertheless, CO2 adsorption capacity of both activated carbons reduced at elevated temperatures, which signified exothermic and physical adsorption (physisorption) behaviour. Besides, process exothermicity of both carbonaceous adsorbents can be corroborated through activation energy (Ea) value, which was deduced from the Arrhenius plot. Ea values that were in range of 32-38 kJ/mol validated exothermic adsorption at low pressure and temperature range of 25-100 °C. To gain an insight into the CO2 adsorption process, experimental data were fitted to intra-particle diffusion model and Boyd's diffusion model, and findings revealed an involvement of both film diffusion and intra-particle diffusion during CO2 adsorption process onto the synthesized activated carbon and commercial activated carbon.
  5. Jusoh N, Rosly MB, Othman N, Rahman HA, Noah NFM, Sulaiman RNR
    Environ Sci Pollut Res Int, 2020 Jun;27(18):23246-23257.
    PMID: 32335833 DOI: 10.1007/s11356-020-07972-5
    Polluted sterilization condensate discharged from palm oil mill may contain polyphenols that are rich in the antioxidant property. Emulsion liquid membrane (ELM) process is a promising method for polyphenol recovery due to its several attractive features such as high selectivity, simple operation, and low energy consumption. In this study, the condensate was characterized to determine its total phenolic content (TPC), ionic elements, and pH. ELM formulation containing tributylphosphate (TBP) as a carrier, kerosene as a diluent, sorbitan monooleate (Span 80) as a surfactant, and sodium hydroxide (NaOH) as a stripping agent was developed. The results show that sterilization condensate contains 700-1500 mg GAE/L of TPC. During the ELM process, more than 91% of extraction with 83% recovery and 8.3 enrichment were achieved at the favorable condition of 0.1 M TBP, external phase pH 5, 1 M NaOH, 1:5 treat ratio, 5% v/v of octanol as a modifier, and 100 mg GAE/L external phase concentrations. Thus, ELM offers a potential alternative technology to extract and recover polyphenols from palm oil mill sterilization condensate while contributing to sustainable production. Graphical abstract Extraction of polyphenols from palm oil mill sterilization condensate using ELM process.
  6. Sulaiman C, Abdul-Rahim AS
    Environ Sci Pollut Res Int, 2020 Oct;27(30):37699-37708.
    PMID: 32607996 DOI: 10.1007/s11356-020-09866-y
    This paper seeks to answer an empirical question of whether clean biomass energy consumption lowers CO2 emissions while controlling for technical innovation in eight selected countries from Africa for the 1980-2015 period. The countries which are chosen based on availability of data on biomass energy and technological innovation include Egypt, Algeria, South Africa, Mauritius, Kenya, Morocco, Tunisia, and Zambia. Applying pooled mean group, mean group, and dynamic fixed effect panel estimators, the results indicate that clean biomass energy use decreases CO2 emission in the long run. But the effect of biomass energy consumption on CO2 emission is insignificant in the short run. The findings imply that CO2 emission can be reduced by increasing clean biomass energy in the energy mix of these countries. Similarly, environmental quality and economic growth can be achieved simultaneously by increasing the share of biomass energy in large-scale production process. Furthermore, the environmental Kuznets curve (EKC), which hypothesizes an inverted U-shaped relationship between CO2 emission and economic growth, was validated in the long run. This suggests that the EKC pattern is only observed in the long run. Thus, as part of recommendation from this study, policy makers in these countries should formulate more policies that will enhance clean biomass energy production and its usage to substitute significant percentage of fossil fuel use in production process.
  7. Ullah S, Majeed MT, Chishti MZ
    Environ Sci Pollut Res Int, 2020 Oct;27(30):38287-38299.
    PMID: 32623670 DOI: 10.1007/s11356-020-09859-x
    Empirical studies pertaining to the effects of fiscal policy instruments on environmental quality have provided mixed evidence. We consider the asymmetric effects of fiscal policy instruments on environmental quality for the top ten Asian carbon emitters over the period 1981-2018. We go beyond the literature and claim that the effects could be asymmetric. More specifically, we found that a positive shock in government expenditure will worsen environmental quality in Malaysia, UAE, Thailand, Indonesia, Turkey, Iran, India, and China, and improve it in Japan. On the other hand, we found that cutting government expenditure will improve environmental quality in these economies and will worsen only in Japan. Moreover, a higher government income tax revenue uniquely increases the government's spending that increases the carbon emissions in Malaysia, UAE, Thailand, Indonesia, Turkey, Iran, India, and China, and decrease in Japan. The negative shock of government revenue has adverse results on carbon emissions in these economies. However, short-run asymmetric effects translate to long-run effects in most Asian economies.
  8. Banadkooki FB, Ehteram M, Ahmed AN, Teo FY, Ebrahimi M, Fai CM, et al.
    Environ Sci Pollut Res Int, 2020 Oct;27(30):38094-38116.
    PMID: 32621196 DOI: 10.1007/s11356-020-09876-w
    Suspended sediment load (SSL) estimation is a required exercise in water resource management. This article proposes the use of hybrid artificial neural network (ANN) models, for the prediction of SSL, based on previous SSL values. Different input scenarios of daily SSL were used to evaluate the capacity of the ANN-ant lion optimization (ALO), ANN-bat algorithm (BA) and ANN-particle swarm optimization (PSO). The Goorganrood basin in Iran was selected for this study. First, the lagged SSL data were used as the inputs to the models. Next, the rainfall and temperature data were used. Optimization algorithms were used to fine-tune the parameters of the ANN model. Three statistical indexes were used to evaluate the accuracy of the models: the root-mean-square error (RMSE), mean absolute error (MAE) and Nash-Sutcliffe efficiency (NSE). An uncertainty analysis of the predicting models was performed to evaluate the capability of the hybrid ANN models. A comparison of models indicated that the ANN-ALO improved the RMSE accuracy of the ANN-BA and ANN-PSO models by 18% and 26%, respectively. Based on the uncertainty analysis, it can be surmised that the ANN-ALO has an acceptable degree of uncertainty in predicting daily SSL. Generally, the results indicate that the ANN-ALO is applicable for a variety of water resource management operations.
  9. Foo SC, Chapman IJ, Hartnell DM, Turner AD, Franklin DJ
    Environ Sci Pollut Res Int, 2020 Nov;27(31):38916-38927.
    PMID: 32638304 DOI: 10.1007/s11356-020-09729-6
    The application of hydrogen peroxide (H2O2) as a management tool to control Microcystis blooms has become increasingly popular due to its short lifetime and targeted action. H2O2 increases intracellular reactive oxygen species resulting in oxidative stress and subsequently cell death. H2O2 is naturally produced in freshwater bodies as a result of photocatalytic reactions between dissolved organic carbon and sunlight. Previously, some studies have suggested that this environmental source of H2O2 selectively targets for toxigenic cyanobacteria strains in the genus Microcystis. Also, past studies only focused on the morphological and biochemical changes of H2O2-induced cell death in Microcystis with little information available on the effects of different H2O2 concentrations on growth, esterase activity and membrane integrity. Therefore, this study investigated the effects of non-lethal (40-4000 nM) concentrations on percentage cell death; with a focus on sub-lethal (50 μM) and lethal (275 μM; 500 μM) doses of H2O2 on growth, cells showing esterase activity and membrane integrity. The non-lethal dose experiment was part of a preliminary study. Results showed a dose- and time-dependent relationship in all three Microcystis strains post H2O2 treatment. H2O2 resulted in a significant increase in intracellular reactive oxygen species, decreased chlorophyll a content, decreased growth rate and esterase activity. Interestingly, at sub-lethal (50 μM H2O2 treatment), percentage of dead cells in microcystin-producing strains was significantly higher (p 
  10. Shabbir MS, Aslam E, Irshad A, Bilal K, Aziz S, Abbasi BA, et al.
    Environ Sci Pollut Res Int, 2020 Nov;27(31):39164-39179.
    PMID: 32642899 DOI: 10.1007/s11356-020-09972-x
    The objective of this study is to examine the relationship between corporate social performance (CSP) as proxy of corporate social responsibility (CSR) and corporate firm's performance (CFP) in the context of Pakistani financial and non-financial firms sectors. This study comprises two main firm's performance indicators such as market base (excess stock returns) and accounting base (returns on assets and returns on capital). The data set starts from 2011 to 2017 and consists of three hundred and fifty (350) firms on equal numbers of financial and non-financial firms. This study uses a non-linear and disaggregated approach for data analysis. The results of the linear model indicate that CSP and returns on capital have a negative relationship, while the non-linear model of CSP and accounting base performance as CFP have positive association in the domain of long run. There is a significant relationship that exist among environmental social governance (ESG) disclosure score, government sub-components score, and social performance. However, a U-shaped association found between CFP and government sub-components, which further suggest that governance has a vital role toward CSP and CFP components.
  11. Shakoor A, Khan AL, Akhter P, Aslam M, Bilad MR, Maafa IM, et al.
    Environ Sci Pollut Res Int, 2021 Mar;28(10):12397-12405.
    PMID: 32651793 DOI: 10.1007/s11356-020-10044-3
    Mixed matrix membranes (MMMs) were fabricated by the hydrothermal synthesis of ordered mesoporous KIT-6 type silica and incorporating in polyimide (P84). KIT-6 and MMMs were characterized to evaluate morphology, thermal stability, surface area, pore volume, and other characteristics. SEM images of synthesized MMMs and permeation data of CO2 suggested homogenous dispersion of mesoporous fillers and their adherence to the polymer matrix. The addition of KIT-6 to polymer matrix improved the permeability of CO2 due to the increase in diffusivity through porous particles. The permeability was 3.2 times higher at 30% loading of filler. However, selectivity showed a slight decrease with the increase in filler loadings. The comparison of gas permeation results of KIT-6 with the well-known MCM-41 revealed that KIT-6 based MMMs showed 14% higher permeability than that of MMMs composed of mesoporous MCM-41. The practical commercial viability of synthesized membranes was examined under different operating temperatures and mixed gas feeds. Mesoporous KIT-6 silica is an attractive additive for gas permeability enhancement without compromising the selectivity of MMMs. Graphical abstract.
  12. Aziz N, Mihardjo LW, Sharif A, Jermsittiparsert K
    Environ Sci Pollut Res Int, 2020 Nov;27(31):39427-39441.
    PMID: 32651778 DOI: 10.1007/s11356-020-10011-y
    BRICS are among the rising nations which drive economic growth by excessive utilization of resources and resulting in environment degradation. Although there is bulk of research on environmental Kuznets curve (EKC), very limited studies explored the scope in context of tourism in BRICS countries. So this research is conducted to explore the association of tourism, renewable energy, and economic growth with carbon emissions by using annual data of BRICS countries from the year 1995 to 2018. By using the recent approach of method of moments quantile regression (MMQR), the finding shows that tourism has stronger significant negative effects from 10th to 40th quantile while the effects are insignificant at remaining quantiles. Furthermore, an inverted U-shape EKC curve is also apparent at all quantiles excluding 10th and 20th quantiles. For renewable energy, the results are found negatively significant across all quantiles (10th-90th) which claim that CO2 emission can be reduced by opting renewable sources. Hence, the empirical results of the current study provide insights for policymakers to consume renewable energy sources for the sustainable economic growth and solution of environmental problems.
  13. Godil DI, Sharif A, Rafique S, Jermsittiparsert K
    Environ Sci Pollut Res Int, 2020 Nov;27(32):40109-40120.
    PMID: 32656759 DOI: 10.1007/s11356-020-09937-0
    With the growing interest among researchers in analyzing the ecological footprint of any country, this study focuses on new dimensions to analyze the long-run and short-run asymmetric impact of tourism, financial development, and globalization on ecological footprint in Turkey by using Quantile Autoregressive Distributed Lag model for the period from 1986 to 2018. Further, the EKC hypothesis was also tested. The results show that tourism, globalization, and financial development are positively and significantly associated with the EFP. This means that the increase in these variables will further increase the ecological footprint in Turkey. The U-shaped EKC curve was found to be valid in Turkey. The results also depict nonlinear and asymmetric association among most of the variables. Hence, based on the results, further research directions and practical implications can be suggested.
  14. Lau YJ, Karri RR, Mubarak NM, Lau SY, Chua HB, Khalid M, et al.
    Environ Sci Pollut Res Int, 2020 Nov;27(32):40121-40134.
    PMID: 32656753 DOI: 10.1007/s11356-020-10045-2
    The feasibility and performance of Jicama peroxidase (JP) immobilized Buckypaper/polyvinyl alcohol (BP/PVA) membrane for methylene blue (MB) dye removal was investigated in a customized multi-stage filtration column under batch recycle mode. The effect of independent variables, such as influent flow rate, ratio of H2O2/MB dye concentration, and contact time on the dye removal efficiency, were investigated using response surface methodology (RSM). To capture the inherent characteristics and better predict the removal efficiency, a data-driven adaptive neuro-fuzzy inference system (ANFIS) is implemented. Results indicated that the optimum dye removal efficiency of 99.7% was achieved at a flow rate of 2 mL/min, 75:1 ratio of H2O2/dye concentration with contact time of 183 min. The model predictions of ANFIS are significantly good compared with RSM, thus resulting in R2 values of 0.9912 and 0.9775, respectively. The enzymatic kinetic parameters, Km and Vmax, were evaluated, which are 1.98 mg/L and 0.0219 mg/L/min, respectively. Results showed that JP-immobilized BP/PVA nanocomposite membrane can be promising and cost-effective biotechnology for the practical application in the treatment of industrial dye effluents.
  15. Arain H, Sharif A, Akbar B, Younis MY
    Environ Sci Pollut Res Int, 2020 Nov;27(32):40456-40474.
    PMID: 32666445 DOI: 10.1007/s11356-020-08836-8
    This paper presents a fresh understanding of the vigorous connection between inward FDI, renewable energy consumption, economic growth and carbon emission in the Chinese economy employing novel Morlet wavelet analysis. Wavelet correlation, continuous wavelet transform and partial and the multiple wavelet coherence analyses are applied on variables under study for data acquired during the period 1979 to 2017. The outcome of these analyses reveals that the connections among the variables progress over frequency and time. From the frequency domain point of view, the current study discovers noteworthy wavelet coherence and robust lead and lag linkages, although time domain reveals inconsistent associations among the considered variables. The wavelet analysis according to economic point of view supports that inward foreign direct investment (FDI) and renewable energy consumption help to enhance economic condition in Chinese economy. The results also suggested that inward FDI enhances the environmental degradation in medium and long run in China. The results emphasize the significance of having organized strategies by the policymakers to cope with huge environmental degradation occurred for a couple of decades in China.
  16. Rayani M, Unyah NZ, Vafafar A, Hatam GR
    Environ Sci Pollut Res Int, 2020 Nov;27(32):40652-40663.
    PMID: 32671708 DOI: 10.1007/s11356-020-10062-1
    The main objective of this study was to characterize the Giardia duodenalis isolates from Iranian patients in Fars Province, south of Iran by biochemical and molecular methods. Fifteen mass cultivated of G. duodenalis isolates in modified TYI-S-33 medium were analyzed using isoenzyme electrophoresis and PCR genotyping. Polyacrylamide gel electrophoresis (PAGE) of five different enzyme systems was used to characterize isolates: (i) glucose-6-phosphate dehydrogenase, (ii) glucose phosphate isomerase, (iii) malate dehydrogenase, (iv) malic enzyme, and (v) phosphoglucomutase. As well, a fragment of the SSU-rDNA (292 bp) gene was amplified by PCR using the primers RH11 and RH4. The sequencing of the PCR products and phylogenetic tree were performed. The isoenzyme electrophoretic profiles divided fifteen G. duodenalis isolates into four zymodemes. G6PD, GPI, MDH, ME, and PGM enzyme systems showed 1, 2, 2, 3, and 3 enzyme pattern, respectively. G6PD isoenzyme pattern had the most homogeneity, while isoenzyme patterns of ME and PGM had the most heterogeneity in our study. Genotyping results indicated that the zymodemes 1-4 were categorized in assemblage A based on the SSU-rDNA gene. Phylogenetic analysis showed that all four zymodemes were distributed within the cluster of assemblage A. Our results indicated that both isoenzyme and DNA analyses were useful to characterize the isolates of Giardia and distinguishing various zymodemes and assemblages. It could be suggested that the genetic diversity among isoenzymes profiles of G. duodenalis may explain the variable clinical manifestations, pathogenicity, host response, drug susceptibility, and treatment efficacy of human giardiasis.
  17. Abba SI, Pham QB, Saini G, Linh NTT, Ahmed AN, Mohajane M, et al.
    Environ Sci Pollut Res Int, 2020 Nov;27(33):41524-41539.
    PMID: 32686045 DOI: 10.1007/s11356-020-09689-x
    In recent decades, various conventional techniques have been formulated around the world to evaluate the overall water quality (WQ) at particular locations. In the present study, back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), and one multilinear regression (MLR) are considered for the prediction of water quality index (WQI) at three stations, namely Nizamuddin, Palla, and Udi (Chambal), across the Yamuna River, India. The nonlinear ensemble technique was proposed using the neural network ensemble (NNE) approach to improve the performance accuracy of the single models. The observed WQ parameters were provided by the Central Pollution Control Board (CPCB) including dissolved oxygen (DO), pH, biological oxygen demand (BOD), ammonia (NH3), temperature (T), and WQI. The performance of the models was evaluated by various statistical indices. The obtained results indicated the feasibility of the developed data intelligence models for predicting the WQI at the three stations with the superior modelling results of the NNE. The results also showed that the minimum values for root mean square (RMS) varied between 0.1213 and 0.4107, 0.003 and 0.0367, and 0.002 and 0.0272 for Nizamuddin, Palla, and Udi (Chambal), respectively. ANFIS-M3, BPNN-M4, and BPNN-M3 improved the performance with regard to an absolute error by 41%, 4%, and 3%, over other models for Nizamuddin, Palla, and Udi (Chambal) stations, respectively. The predictive comparison demonstrated that NNE proved to be effective and can therefore serve as a reliable prediction approach. The inferences of this paper would be of interest to policymakers in terms of WQ for establishing sustainable management strategies of water resources.
  18. You X, Liu S, Dai C, Zhong G, Duan Y, Guo Y, et al.
    Environ Sci Pollut Res Int, 2020 Nov;27(33):41623-41638.
    PMID: 32691313 DOI: 10.1007/s11356-020-10149-9
    Ethylenediaminetetraacetic acid (EDTA) can serve as a washing agent in the remediation of low-permeability layers contaminated by heavy metals (HMs). Therefore, batch adsorption experiments, where pure quartz (SM1) and mineral mixtures (SM2) were used as typical soil minerals (SMs) in low-permeability layers, were implemented to explore the effects of different EDTA concentrations, pH, and exogenous chemicals on the HM-SM-EDTA adsorption system. As the EDTA concentration increased, it gradually cut down the maximum Cd adsorption capacities of SM1 and SM2 from approximately 135 to 55 mg/kg and 2660 to 1453 mg/kg; and the maximum Pb adsorption capacities of SM1 and SM2 were reduced from 660 to 306 mg/kg and 19,677 to 19,262 mg/kg, respectively. When the initial mole ratio (MR = moles of HM ions/sum of moles of HM ions and EDTA) was closer to 0.5, the effect of EDTA was more effective. Additionally, EDTA worked well at pH below 7.0 and 4.0 for Cd and Pb, respectively. Low-molecular-weight organic acids (LMWOAs) affected the system mainly by bridging, complexation, adsorption site competition, and reductive dissolution. Cu2+, Fe2+ ions could significantly increase the Cd and Pb adsorption onto SM2. Notably, there were characteristic changes in mineral particles, including attachment of EDTA and microparticles, agglomeration, connection, and smoother surfaces, making the specific surface area (SSA) decrease from 16.73 to 12.59 m2/g. All findings indicated that EDTA could effectively and economically reduce the HM adsorption capacity of SMs at the reasonable MR value, contact time, and pH; EDTA reduced the HM adsorption capacity of SMs not only by complexation with HM ions but also by decreasing SSA and blocking active sites. Hence, the acquired insight from the presented study can help to promote the remediation of contaminated low-permeability layers in groundwater.
  19. Afandi NS, Mohammadi M, Ichikawa S, Mohamed AR
    Environ Sci Pollut Res Int, 2020 Dec;27(34):43011-43027.
    PMID: 32725565 DOI: 10.1007/s11356-020-10269-2
    Several multi-walled carbon nanotubes supported Ni-Ce catalysts were synthesized, and their performance in carbon dioxide reforming of methane (CDRM) for syngas production was evaluated. The attachment of Ni-Ce nanoparticles to the functionalized carbon nanotube (fCNT) support was carried out using four synthesis routes, i.e., impregnation (I), sol-gel (S), co-precipitation (C), and hydrothermal (H) methods. Results indicated that synthesis method influences the properties of the NiCe/fCNT catalysts in terms of homogeneity of metal dispersion, size of crystallites, and metal-support interaction. The activity of the catalysts followed the order of NiCe/fCNT(H) > NiCe/fCNT(S) > NiCe/fCNT(C) > NiCe/fCNT(I). The NiCe/fCNT(H) catalyst exhibited the highest catalytic activity with CH4 and CO2 conversions of 92 and 96%, respectively, and resulted in syngas product with consistent H2/CO ratio of 0.91 at reaction temperature of 800 °C without notable deactivation up to 30 h of reaction. Moreover, the growth of carbon on the spent catalyst was only 2% with deposition rate of 4.08 mg/gcat·h; this was plausibly due to the well-dispersed distribution of nanoparticles on fCNT surface and abundant presence of oxygenated groups on the catalyst surface.
  20. Mohd-Din M, Abdul-Wahab MF, Mohamad SE, Jamaluddin H, Shahir S, Ibrahim Z, et al.
    Environ Sci Pollut Res Int, 2020 Dec;27(34):42948-42959.
    PMID: 32725555 DOI: 10.1007/s11356-020-10184-6
    The Johor Strait has experienced rapid development of various human activities and served as the main marine aquaculture area for the two countries that bordered the strait. Several fish kill incidents in 2014 and 2015 have been confirmed, attributed to the algal blooms of ichthyotoxic dinoflagellates; however, the cause of fish kill events after 2016 was not clarified and the causative organisms remained unknown. To clarify the potential cause of fish kills along the Johor Strait, a 1-year field investigation was conducted with monthly sampling between May 2018 and April 2019. Monthly vertical profiles of physical water parameters (temperature, salinity, and dissolved oxygen levels) were measured in situ at different depths (subsurface, 1 m, 5 m, and 8 m) depending on the ambient depth of the water column at the sampling stations. The spatial-temporal variability of macronutrients and chlorophyll a content was analyzed. Our results showed that high chlorophyll a concentration (up to 48.8 μg/L) and high biomass blooms of Skeletonema, Chaetoceros, Rhizosolenia, and Thalassiosira were observed seasonally at the inner part of the strait. A hypoxic to anoxic dead zone, with the dissolved oxygen levels ranging from 0.19 to 1.7 mg/L, was identified in the inner Johor Strait, covering an estimated area of 10.3 km2. The occurrence of high biomass diatom blooms and formation of the hypoxic-anoxic zone along the inner part Johor Strait were likely the culprits of some fish kill incidents after 2016.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links