Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Shi L, Fu X, Tan CP, Huang Q, Zhang B
    J Agric Food Chem, 2017 Mar 15;65(10):2189-2197.
    PMID: 28215072 DOI: 10.1021/acs.jafc.6b05749
    Ethylene gas was introduced into granular cold-water-soluble (GCWS) starches using a solid encapsulation method. The morphological and structural properties of the novel inclusion complexes (ICs) were characterized using scanning electron microscopy, X-ray diffractometry, and Raman spectroscopy. The V-type single helix of GCWS starches was formed through controlled gelatinization and ethanol precipitation and was approved to host ethylene gas. The controlled release characteristics of ICs were also investigated at various temperature and relative humidity conditions. Avrami's equation was fitted to understand the release kinetics and showed that the release of ethylene from the ICs was accelerated by increasing temperature or RH and was decelerated by increased degree of amylose polymerization. The IC of Hylon-7 had the highest ethylene concentration (31.8%, w/w) among the five starches, and the IC of normal potato starch showed the best controlled release characteristics. As a renewable and inexpensive material, GCWS starch is a desirable solid encapsulation matrix with potential in agricultural and food applications.
  2. Khoo VPH, Ting RS, Wang X, Luo Y, Seeley J, Ong JJ, et al.
    Front Psychol, 2021;12:773510.
    PMID: 34955992 DOI: 10.3389/fpsyg.2021.773510
    Background: Though many literatures documented burnout and occupational hazard among healthcare workers and frontliners during pandemic, not many adopted a systemic approach to look at the resilience among this population. Another under-studied population was the large numbers of global healthcare workers who have been deployed to tackle the crisis of COVID-19 pandemic in the less resourceful regions. We investigated both the mental wellbeing risk and protective factors of a deployed healthcare workers (DHWs) team in Wuhan, the epicenter of the virus outbreak during 2020. Method: A consensual qualitative research approach was adopted with 25 DHWs from H province through semi-structured interviews after 3 months of deployment period. Results: Inductive-Deductive thematic coding with self-reflexivity revealed multi-layered risk and protective factors for DHWs at the COVID-19 frontline. Intensive working schedule and high-risk environment, compounded by unfamiliar work setting and colleagues; local culture adaptation; isolation from usual social circle, strained the DHWs. Meanwhile, reciprocal relationships and "familial relatedness" with patients and colleagues; organizational support to the DHWs and their immediate families back home, formed crucial wellbeing resources in sustaining the DHWs. The dynamic and dialectical relationships between risk and protective factors embedded in multiple layers of relational contexts could be mapped into a socio-ecological framework. Conclusion: Our multidisciplinary study highlights the unique social connectedness between patient-DHWs; within DHWs team; between deploying hospital and DHWs; and between DHWs and the local partners. We recommend five organizational strategies as mental health promotion and capacity building for DHWs to build a resilient network and prevent burnout at the disaster frontline.
  3. Sun Y, Tang H, Du S, Chen Y, Ou Z, Zhang M, et al.
    Eco Environ Health, 2023 Dec;2(4):208-218.
    PMID: 38435359 DOI: 10.1016/j.eehl.2023.08.001
    Indoor microorganisms impact asthma and allergic rhinitis (AR), but the associated microbial taxa often vary extensively due to climate and geographical variations. To provide more consistent environmental assessments, new perspectives on microbial exposure for asthma and AR are needed. Home dust from 97 cases (32 asthma alone, 37 AR alone, 28 comorbidity) and 52 age- and gender-matched controls in Shanghai, China, were analyzed using high-throughput shotgun metagenomic sequencing and liquid chromatography-mass spectrometry. Homes of healthy children were enriched with environmental microbes, including Paracoccus, Pseudomonas, and Psychrobacter, and metabolites like keto acids, indoles, pyridines, and flavonoids (astragalin, hesperidin) (False Discovery Rate 
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links