Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Gan CC, Jalalonmuhali M, Nordin NZ, Abdul Wahab MZ, Yahya R, Ng KP, et al.
    Transplant Proc, 2021 Apr;53(3):856-864.
    PMID: 33487455 DOI: 10.1016/j.transproceed.2020.10.038
    Malaysia has a low deceased-donor donation rate and has not embarked on a paired kidney exchange program; therefore, ABO-incompatible and HLA-incompatible transplantation remain the main contributor to the sustainability of the national kidney transplantation (KT) program. There were 26 cases of ABO-incompatible KTs performed from 2011 to 2018 in 3 major transplant centers, namely, Hospital Kuala Lumpur, University Malaya Medical Centre, and Prince Court Medical Centre. We collected perioperative and follow-up data through June 2019. The desensitization protocol varies and is center specific: the localized Japanese protocol and Swedish protocol with a target anti-A/B isoagglutinin titer of 16 or 32 on the day of transplant. The induction and tacrolimus-based maintenance protocol was nearly identical. The median follow-up time was 62.3 months (interquartile range, 37.0-79.7). Fifteen subjects had the highest predesensitization anti-A/B titer of ≥32 (57.7%). The acute cellular rejection and antibody-mediated rejection incidence were 12.5% (3 cases) and 8.3% (2 cases), respectively. Patient, graft, and death-censored graft survival rates were 96.2%, 92.3%, and 96.0%, respectively, 1 year post-living-donor KT (LDKT) and 96.2%, 87.2%, and 90.7%, respectively, 5 years post-LDKT. Our experience shows that ABO-incompatible LDKT using a suitable desensitization technique could be a safe and feasible choice for LDKT even with varied desensitization regimens for recipients with relatively high baseline isoagglutinin titers.
  2. Noor Azian MY, San YM, Gan CC, Yusri MY, Nurulsyamzawaty Y, Zuhaizam AH, et al.
    Trop Biomed, 2007 Jun;24(1):55-62.
    PMID: 17568378 MyJurnal
    The objective was to estimate the prevalence of intestinal protozoa among the aborigines and to determine the problems regarding the infection. The study was carried out in January 2006 in Pos Senderut, Pahang, Malaysia. Samples of faeces were collected from children and adults and these were fixed in PVA and trichrome staining was carried out. From the 130 individuals studied, 94 (72.3%) were positive with at least one intestinal protozoa. Nine intestinal protozoa namely Blastocystis hominis, Giardia lamblia, Entamoeba histolytica, Entamoeba coli, Endolimax nana, Entamoeba hartmani, Entamoeba polecki, Iodamoeba butschlii and Chilomastix mesnili were detected. The prevalent species were B. hominis (52.3%), followed by G. lamblia (29.2%), E. coli (26.2%) and E. histolytica (18.5%). The other species ranged from 1.5 to 10.8%. Among the positive samples, mixed infection with E. histolytica and G. lamblia was 3.8%, E. histolytica and B. hominis was 15.4%, G. lamblia and B. hominis was 17.7%. Triple infection of E. histolytica, G. lamblia and B. hominis was 3.1%. The infection was more prevalent in children below 10 years age group (45.4%) and lowest in the age above 60 years (3.8%). The high prevalence was attributable to poor environmental management, poor personal hygiene and lack of health education.
  3. Hakim SL, Gan CC, Malkit K, Azian MN, Chong CK, Shaari N, et al.
    PMID: 17877212
    In April 2004, an outbreak of acute diarrheal illness occurred among the Orang Asli (aborigine) in the Cameron Highlands, Pahang State, Peninsular Malaysia, where rotavirus was later implicated as the cause. In the course of the epidemic investigation, stool samples were collected and examined for infectious agents including parasites. Soil transmitted helminthes (STH), namely Ascaris lumbricoides (25.7%), Trichuris trichiura (31.1%) and hookworm (8.1%), and intestinal protozoa, which included Giardia lamblia (17.6%), Entamoeba histolytica/E. dispar (9.4%), Blastocystis hominis (8.1%) and Cryptosporidium parvum (2.7%), were detected. Forty-four (59.5%) were infected with at least one parasite, 24 (32.4%), 12 (16.2%) and 8 (10.8%) had single, double and triple parasitic infections, respectively. STH were prevalent with infections occurring as early as in infancy. Giardia lamblia, though the most commonly found parasite in samples from symptomatic subjects, was within the normally reported rate of giardiasis among the various communities in Malaysia, and was an unlikely cause of the outbreak. However, heavy pre-existing parasitic infections could have contributed to the severity of the rotavirus diarrheal outbreak.
  4. Lee BKB, Gan CP, Chang JK, Tan JL, Fadlullah MZ, Abdul Rahman ZA, et al.
    J Dent Res, 2018 07;97(8):909-916.
    PMID: 29512401 DOI: 10.1177/0022034518759038
    Head and neck cancer (HNC)-derived cell lines represent fundamental models for studying the biological mechanisms underlying cancer development and precision therapies. However, mining the genomic information of HNC cells from available databases requires knowledge on bioinformatics and computational skill sets. Here, we developed a user-friendly web resource for exploring, visualizing, and analyzing genomics information of commonly used HNC cell lines. We populated the current version of GENIPAC with 44 HNC cell lines from 3 studies: ORL Series, OPC-22, and H Series. Specifically, the mRNA expressions for all the 3 studies were derived with RNA-seq. The copy number alterations analysis of ORL Series was performed on the Genome Wide Human Cytoscan HD array, while copy number alterations for OPC-22 were derived from whole exome sequencing. Mutations from ORL Series and H Series were derived from RNA-seq information, while OPC-22 was based on whole exome sequencing. All genomic information was preprocessed with customized scripts and underwent data validation and correction through data set validator tools provided by cBioPortal. The clinical and genomic information of 44 HNC cell lines are easily assessable in GENIPAC. The functional utility of GENIPAC was demonstrated with some of the genomic alterations that are commonly reported in HNC, such as TP53, EGFR, CCND1, and PIK3CA. We showed that these genomic alterations as reported in The Cancer Genome Atlas database were recapitulated in the HNC cell lines in GENIPAC. Importantly, genomic alterations within pathways could be simultaneously visualized. We developed GENIPAC to create access to genomic information on HNC cell lines. This cancer omics initiative will help the research community to accelerate better understanding of HNC and the development of new precision therapeutic options for HNC treatment. GENIPAC is freely available at http://genipac.cancerresearch.my/ .
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links