Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  2. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  3. Wu YL, Zhou C, Liam CK, Wu G, Liu X, Zhong Z, et al.
    Ann Oncol, 2015 Sep;26(9):1883-1889.
    PMID: 26105600 DOI: 10.1093/annonc/mdv270
    BACKGROUND: The phase III, randomized, open-label ENSURE study (NCT01342965) evaluated first-line erlotinib versus gemcitabine/cisplatin (GP) in patients from China, Malaysia and the Philippines with epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC).

    PATIENTS AND METHODS: Patients ≥18 years old with histologically/cytologically confirmed stage IIIB/IV EGFR mutation-positive NSCLC and Eastern Cooperative Oncology Group performance status 0-2 were randomized 1:1 to receive erlotinib (oral; 150 mg once daily until progression/unacceptable toxicity) or GP [G 1250 mg/m(2) i.v. days 1 and 8 (3-weekly cycle); P 75 mg/m(2) i.v. day 1, (3-weekly cycle) for up to four cycles]. Primary end point: investigator-assessed progression-free survival (PFS). Other end points include objective response rate (ORR), overall survival (OS), and safety.

    RESULTS: A total of 217 patients were randomized: 110 to erlotinib and 107 to GP. Investigator-assessed median PFS was 11.0 months versus 5.5 months, erlotinib versus GP, respectively [hazard ratio (HR), 0.34, 95% confidence interval (CI) 0.22-0.51; log-rank P < 0.0001]. Independent Review Committee-assessed median PFS was consistent (HR, 0.42). Median OS was 26.3 versus 25.5 months, erlotinib versus GP, respectively (HR, 0.91, 95% CI 0.63-1.31; log-rank P = .607). ORR was 62.7% for erlotinib and 33.6% for GP. Treatment-related serious adverse events (AEs) occurred in 2.7% versus 10.6% of erlotinib and GP patients, respectively. The most common grade ≥3 AEs were rash (6.4%) with erlotinib, and neutropenia (25.0%), leukopenia (14.4%), and anemia (12.5%) with GP.

    CONCLUSION: These analyses demonstrate that first-line erlotinib provides a statistically significant improvement in PFS versus GP in Asian patients with EGFR mutation-positive NSCLC (NCT01342965).

  4. Jeevaratnam K, Guzadhur L, Goh YM, Grace AA, Huang CL
    Acta Physiol (Oxf), 2016 Feb;216(2):186-202.
    PMID: 26284956 DOI: 10.1111/apha.12577
    Normal cardiac excitation involves orderly conduction of electrical activation and recovery dependent upon surface membrane, voltage-gated, sodium (Na(+) ) channel α-subunits (Nav 1.5). We summarize experimental studies of physiological and clinical consequences of loss-of-function Na(+) channel mutations. Of these conditions, Brugada syndrome (BrS) and progressive cardiac conduction defect (PCCD) are associated with sudden, often fatal, ventricular tachycardia (VT) or fibrillation. Mouse Scn5a(+/-) hearts replicate important clinical phenotypes modelling these human conditions. The arrhythmic phenotype is associated not only with the primary biophysical change but also with additional, anatomical abnormalities, in turn dependent upon age and sex, each themselves exerting arrhythmic effects. Available evidence suggests a unified binary scheme for the development of arrhythmia in both BrS and PCCD. Previous biophysical studies suggested that Nav 1.5 deficiency produces a background electrophysiological defect compromising conduction, thereby producing an arrhythmic substrate unmasked by flecainide or ajmaline challenge. More recent reports further suggest a progressive decline in conduction velocity and increase in its dispersion particularly in ageing male Nav 1.5 haploinsufficient compared to WT hearts. This appears to involve a selective appearance of slow conduction at the expense of rapidly conducting pathways with changes in their frequency distributions. These changes were related to increased cardiac fibrosis. It is thus the combination of the structural and biophysical changes both accentuating arrhythmic substrate that may produce arrhythmic tendency. This binary scheme explains the combined requirement for separate, biophysical and structural changes, particularly occurring in ageing Nav 1.5 haploinsufficient males in producing clinical arrhythmia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links