Displaying publications 21 - 22 of 22 in total

Abstract:
Sort:
  1. Khoo YW, Khaw YS, Tan HT, Li SF, Chong KP
    Plant Dis, 2022 Jul 22.
    PMID: 35869589 DOI: 10.1094/PDIS-04-22-0847-PDN
    Basella rubra (family Basellaceae), locally known as 'Remayong Merah', is the edible perennial vine served as leafy vegetable in Malaysia. In May 2021, B. rubra's leaves with circular to subcircular purple spots (ranging from 1-10 mm wide) were collected in Lido (5°56'44.6"N 116°04'46.5"E), Sabah province. The disease severity was about 60% with 20% disease incidence on fifty plants. As disease developed, the spots grew larger and necrosis were formed within the purple spots. Small pieces (5 x 5 mm) of five diseased spots were excised, and then surface sterilized based on Khoo et al. (2022b) before plating on water agar at 25°C. Once obtained the pure cultures from all diseased spots, they were incubated on potato dextrose agar at 25°C. After 7 days, white aerial mycelium with light violet pigmentation on lower side were observed on PDA. Then, the fungi were cultured on Carnation leaf agar (CLA) at 25°C and 12-h light/dark photoperiod for 10 days. Thin-walled slender and slightly curved macroconidia (n= 20) with 3 to 5 septa were ranged from 2.3 to 2.6 µm wide by 26.8 to 44.5 µm long in size. Oval microconidia (n= 20) with no septa were 2 to 2.2 µm wide by 9.5 to 15 µm long in size. Chlamydospores were absent. Monophialids with false head were observed. Isolate Lido and Lido02 were kept in the Laboratory of Genetics, Faculty of Science and Natural Resources, Universiti Malaysia Sabah for public request. Their genomic DNA were extracted from fresh mycelia of isolates based on Khoo et al. (2022a). EF1/EF2, RPB1-Fa/RPB1-G2R and RPB2-5f2/RPB2-7cr (Jiang et al. 2021) were used to amplify the translation elongation factor 1-α (TEF1) region, RNA polymerase largest subunit gene (RPB1) and RNA polymerase second largest subunit gene (RPB2) based on PCR condition in Khoo et al. (2022b). The isolate's sequences were deposited in GenBank as OM048109, OM634654 (TEF1), OM634655, OM634657 (RPB1) and OM634656, OM634658 (RPB2). They were 99 to 100% homology to TEF1 of isolate DPCT0102-2 (LC581453) (657/657 bp), RPB1 of strain ZJ05 (MT560605) (1558/1558 bp) and RPB2 of isolate GR_FP248 (MT305154) (1867/1869 bp) sequences. These sequences were polyphasic identified at the Fusarium MLST (https://fusarium.mycobank.org/), and were more than 99% similarity to Gibberella fujikuroi species complex (NRRL 25200). Gibberella fujikuroi and Fusarium fujikuroi are synonymous with Fusarium proliferatum (Leslie and Summerell 2006). The pathogen was identified as F. proliferatum based on morphological characterization, molecular data and phylogenetic analysis. Two non-wounded leaves of three one-month-old B. rubra seedlings were inoculated with mycelium plug (10 x 10 mm). Additional three B. rubra seedlings received sterile PDA agar plug (10 x 10 mm) to serve as controls. They were incubated in a glasshouse at room temperature 25°C with a relative humidity of 80 to 90%. After 8 days of inoculation, all inoculated leaves exhibited the symptoms as observed in the field, while the controls showed no symptoms, thus confirming the Koch's postulates. The experiment was repeated two more times. The reisolated pathogens were identified as F. proliferatum via PDA macroscopically, CLA microscopically and PCR amplification. F. proliferatum was reported previously causing leaf spot disease on Cymbidium orchids (Wang et al. 2018), tobacco (Li et al. 2017) and tomato (Gao et al. 2017). To our knowledge, this is the first report of F. proliferatum causing leaf spot on B. rubra in Malaysia. Infections of leaves reduce plant vigor and marketability. The identification of leaf spot caused by F. proliferatun will enable plant health authorities and farmers to identify practices to minimize disease on this important crop.
  2. Khoo YW, Hui Teng T, Khaw YS, Li S, Chong KP
    Plant Dis, 2022 Aug 08.
    PMID: 35939750 DOI: 10.1094/PDIS-12-21-2787-PDN
    Cinnamomum camphora (Lauraceae), commonly known as camphor tree, is widely grown as an ornamental and is used as a source of camphor in Malaysia. In June 2021, leaves of three camphor trees with anthracnose symptoms were collected from a park (6°02'00.8"N, 116°07'18.5"E) at the Universiti Malaysia Sabah in Sabah province. The average disease severity across diseased plants was about 60% with 30% incidence on 10 surveyed plants. The disease severity on disease area of 10 leaves from each three diseased plants was estimated using ImageJ software. The disease incidence was determined based on Sharma et al. (2017). Gray spots were observed primarily on the surface of the leaves. After a week, the spots coalesced into larger patches, and anthracnose developed. Small pieces (5 x 5 mm) of symptomatic leaf tissue from three camphor trees were excised from the margin between healthy and symptomatic tissue. The pieces were surface-sterilized with 75% ethanol for 1 minute, washed with 2% sodium hypochlorite solution for 1 minute, rinsed, and air dried before plating in three Petri dishes with Potato dextrose agar, and incubated for 7 days at 25°C in the dark. After 7 days, all the PDA plates had abundant gray-white fluffy hyphae. Mycelium was dark brown when observed from the underside of the plate. The isolates UMS02, UMS04 and UMS05 were characterized morphologically and molecularly. The conidia were one-celled, cylindrical, hyaline, and smooth, with blunt ends, and ranged in size from 13.9 to 16.3 x 3.8 to 6.1 μm (n = 20). Appressoria were round to irregular in shape and dark brown in color, with size ranging from 7.8 to 9.8 μm x 5.3 to 6.8 μm (n= 20). Genomic DNA was extracted from fresh mycelium of the isolates based on Khoo et al. (2022a). Amplification of the internal transcribed spacer (ITS) region, calmodulin (CAL), actin (ACT), chitin synthase (CHS-1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes of the isolate was performed using primer pairs ITS1/ITS4, CL1C/CL2C, ACT-512F/ACT-783R, CHS-79F/CHS-354R, and GDF1/GDR1 (Weir et al. 2012). PCR products with positive amplicons were sent to Apical Scientific Sdn. Bhd. for sequencing. Sequences of the isolates were deposited in GenBank as OK448747, OM501094, OM501095 (ITS), OL953034, OM513908, OM513909 (CAL), OL953031, OM513910, OM513911 (ACT), OL953037, OM513912, OM513913 (CHS-1), and OL953040, OM513914, OM513915 (GAPDH). They were 100% identical to ITS (MN296082), CAL (MN525840), ACT (MW341257, MN525819), CHS-1 (MT210318), and GAPDH (MT682399, MN525882) sequences of Colletotrichum siamense. Phylogenetic analysis using maximum likelihood on the concatenated ITS, CAL, ACT, CHS-1 and GAPDH sequences indicated that the isolates formed a clade (82% bootstrap support) to C. siamense. Morphological and molecular characterization matched the description of C. siamense (Huang et al. 2022). Koch's postulates were performed by spraying a spore suspension (106 spores/ml) on leaves of three healthy two-month-old camphor trees, while water was sprayed on three additional camphor trees which served as control. The inoculated camphor trees were covered with plastics for 48 h at 25°C in the dark, and then placed in the greenhouse. Monitoring and incubation were performed based on Chai et al. (2017) and Iftikhar et al. (2022). Symptoms similar to those observed in the field occurred 8 days post-inoculation. No symptoms occurred on controls. The experiment was repeated two more times. C. siamense has been reported causing anthracnose on camphor tree in China (Liu et al. 2022), Citrus spp. in Mexico (Pérez-Mora et al. 2021), and Crinum asiaticum and eggplant in Malaysia (Khoo et al. 2022b, 2022c). To our knowledge, this is the first report of C. siamense causing anthracnose on C. camphora in Malaysia. Our findings expand the geographic range of C. siamense and indicate it could be a potential threat limiting the camphor production of C. camphora in Malaysia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links