Displaying publications 1 - 20 of 59 in total

  1. Ko Y, Chen CY, Yao KS, Liu CW, Maruthasalam S, Lin CH
    Plant Dis., 2008 Aug;92(8):1248.
    PMID: 30769472 DOI: 10.1094/PDIS-92-8-1248B
    In March 2005, a fruit rot disease was found in several commercial strawberry (Fragaria × ananassa Duchesne) fields at Fongyuan, 24.25°N, 120.72°E, in Taichung County in central Taiwan. The disease was rare and was negligible in most cultivated areas. However, disease incidence has increased by 4 to 5% over the last 2 years and causes significant postharvest losses. In storage, symptoms on berries include light brown-to-black, sunken, irregularly shaped lesions. The lesions gradually enlarge and become firm with a dark green-to-black, velvety surface composed of mycelia, conidiophores, and conidia. Twelve single conidial isolates (AF-1 to AF-12) of a fungus were isolated by placing portions of symptomatic fruit from four locations onto acidified potato dextrose agar (PDA) and incubating at 24 ± 1°C. One isolate from each of the four locations, AF-2, 6, 9, and 12, was selected for identification and pathogenicity studies. The fungus was identified as an Alternaria sp. according to the morphological descriptions of A. tenuissima (2,3). Conidiophores were simple or branched, straight or flexuous, septate, pale to light brown, 3.0 to 5.0 μm in diameter, and bore two to six conidia in a chain. Conidia were dark brown, obclavate or oval, and multicellular with seven transverse (in most cases) and numerous longitudinal septa. Conidia were 15.5 to 56.5 μm (average 35.0 μm) long × 6.0 to 15.0 μm (average 11.0 μm) wide at the broadest point. The pathogen was consistently isolated from berries in the field or in storage. Pathogenicity tests were conducted by inoculating 12 surface-sterilized berries with each of the four isolates. Approximately 300 μl of a spore suspension (2 × 105 conidia per ml) was placed at two points on the uninjured surface of each fruit and allowed to dry for 5 min. Control fruits were treated with sterile water. The berries were then enclosed in a plastic bag and incubated at 24 ± 1°C for 2 days. Disease symptoms similar to those described above were observed on 95% of inoculated berries 3 days after inoculation, while no symptoms developed in control berries. Reisolation from the inoculated berries consistently yielded the Alternaria sp. described above. Pathogenicity tests were performed three times. Previously, strawberry fruit rot caused by A. tenuissima was reported from Florida (2) and Malaysia (1), however, to our knowledge, this is the first report of fruit rot of strawberry caused by a species of Alternaria in Taiwan. References: (1) W. D. Cho et al. List of Plant Diseases in Korea. Korean Society of Plant Pathology, 2004. (2) C. M. Howard and E. E. Albregts. Phytopathology 63:938, 1973. (3) R. D. Milholland. Phytopathology 63:1395, 1973.
  2. Ko Y, Liu CW, Chen CY, Maruthasalam S, Lin CH
    Plant Dis., 2009 Jul;93(7):764.
    PMID: 30764368 DOI: 10.1094/PDIS-93-7-0764A
    Mango (Mangifera indica L.) is grown on approximately 20,000 ha in Taiwan. It is an economically important crop and the income of many fruit farmers comes primarily from mango production. During 2006 and 2007, a stem-end rot disease was observed 1 week after harvest on 28 to 36% of stored mangoes picked from six orchards in the Pingtung, Tainan, and Kaoshiung regions. Two popular mango cultivars, Keitt and Irwin, showed greater susceptibility to this disease, while 'Haden' was found to be moderately susceptible. In storage, symptoms initially appeared as light-to-dark brown lesions surrounding peduncles. Rot symptoms advanced slowly but eventually penetrated the mesocarp, which consequently reduced the commercial value of fruits. The fungus formed abundant pycnidia (0.1 to 0.6 mm in diameter) on infected fruits in advanced stages of symptom development. Pieces of symptomatic fruits plated on acidified potato dextrose agar (PDA) and incubated at 25 ± 1°C consistently yielded the same fungus. A single conidial isolate was cultured. Pycnidia developed on PDA after continuous exposure to light for 9 to 14 days. On the basis of morphological characteristics, the fungus was identified as Phomopsis mangiferae L. (2,3). Pycnidia released two types of conidia: α-conidia (5 to 10 × 2.3 to 4.0 μm) were hyaline and oval to fusoid; and β-conidia (15.0 to 37.5 × 1.3 to 2.5 μm) were hyaline and filiform with characteristic curves. Conidiophores were hyaline, filiform, simple or branched, septate, and 15 to 75 μm long. Cultures incubated under continuous fluorescent light (185 ± 35 μE·m-2·s-1) at 25°C for 3 days were used as inoculum for pathogenicity tests. Five fruits from 'Keitt' were wounded with a sterilized scalpel and each wound (2 × 2 × 2 mm) was inoculated with either a 5-mm mycelium agar plug or a 0.5-ml spore suspension (105 conidia per ml) of the fungus. Five wounded fruits inoculated with 5-mm PDA plugs or sterile water alone served as controls. Inoculated areas were covered with moist, sterile cotton. Fruits were enclosed in plastic bags and incubated at 24°C for 3 days. The test was performed three times. The same symptoms were observed on all inoculated fruits, whereas no decay was observed on control fruits. Reisolations from the inoculated fruits consistently yielded P. mangiferae, thus fulfilling Koch's postulates. This disease has previously been reported in Australia, Brazil, China, Cuba, India, Malaysia, and the United States (1). To our knowledge, this is the first report of P. mangiferae causing stem-end rot disease on mangoes in Taiwan. Our report necessitates taking preventive strategies in the field, prior to or after harvest, to contain postharvest losses in mangoes. References: (1) G. I. Johnson. Page 39 in: Compendium of Tropical Fruit Diseases. R. C. Ploetz et al., eds. The American Phytopathological Society. St. Paul, MN, 1994. (2) R. C. Ploetz, ed. Page 354 in: Diseases of Tropical Fruit Crops. CABI Publishing. Wallingford, UK, 2003. (3) E. Punithalingam. No. 1168 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1993.
  3. Keith LM
    Plant Dis., 2008 May;92(5):835.
    PMID: 30769617 DOI: 10.1094/PDIS-92-5-0835B
    Rambutan (Nephelium lappaceum Linn.) is a tropical, exotic fruit that has a rapidly expanding niche market in Hawaii. Diseased rambutan fruit was commonly observed in orchards in the Hilo and Kona districts of Hawaii Island during 2006. In surveys conducted in January, symptoms appeared as dark brown-to-black spots on mature fruit and blackened areas at the base of spinterns (hair-like projections) of mature and immature fruits. Pieces of infected fruit (cv. R167) were surface sterilized for 2 min in 0.5% NaOCl, plated on potato dextrose agar, and incubated at 24 ± 1°C for 7 days. The fungus growing on PDA was pale buff with sparse, aerial mycelium and acervuli containing black, slimy spore masses. All isolates had five-celled conidia. Apical and basal cells were hyaline, while the three median cells were olivaceous; the upper two were slightly darker than the lower one. Conidia (n = 40) were 20.3 ± 0.1 × 6.8 ± 0.1 μm. There were typically three apical appendages averaging 16.8 ± 0.2 μm long. The average basal appendage was 3.8 ± 0.1 μm long. The fungus was initially identified as Pestalotiopsis virgatula (Kleb.) Stey. on the basis of conidial and cultural characteristics (3). The identification was confirmed by molecular analysis of the 5.8S subunit and flanking internal transcribed spacers (ITS1 and ITS2) of rDNA amplified from DNA extracted from single-spore cultures with the ITS1/ITS4 primers (1,4) and sequenced (GenBank Accession No. EU047943). To confirm pathogenicity, agar pieces, 3 mm in diameter, from 7-day old cultures were used as inoculum. Five mature fruit from rambutan cv. R134 were rinsed with tap water, surface sterilized with 0.5% NaOCl for 2 min, wounded with a needle head, inoculated in the laboratory, and maintained in a moist chamber for 7 days. Lesions resembling symptoms that occurred in the field were observed on fruit after 7 days. No symptoms were observed on fruit inoculated with agar media. The fungus reisolated from diseased fruit was identical to the original isolates, confirming Koch's postulates. The disease appears to be widespread in Hawaii. Preharvest symptoms may have the potential to affect postharvest fruit quality if fruits are not stored at the proper conditions. Pestalotiopsis spp. have been reported on rambutan in Malaysia, Brunei, and Australia (2). To my knowledge, this is the first report of P. virgatula causing fruit spots on rambutan in Hawaii. References: (1) G. Caetano-Annolles et al. Curr. Genet. 39:346, 2001. (2) D. F. Farr et al. Fungal Databases. Systematic Botany and Mycology Laboratory. On-line publication. ARS, USDA, 2007. (3) E. F. Guba. Monograph of Pestalotia and Monochaetia. Harvard University Press, Cambridge, MA, 1961. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. 1990.
  4. Tsai WS, Shih SL, Green SK, Jan FJ
    Plant Dis., 2007 Jul;91(7):907.
    PMID: 30780410 DOI: 10.1094/PDIS-91-7-0907A
    Whitefly-transmitted, cucurbit-infecting begomoviruses (genus Begomovirus, family Geminiviridae) have been detected on cucurbit crops in Bangladesh, China, Egypt, Israel, Malaysia, Mexico, the Philippines, Thailand, United States, and Vietnam. Pumpkin plants showing leaf curling, blistering, and yellowing symptoms were observed in the AVRDC fields (Tainan, Taiwan) during 2001 and in nearby farmers' fields during 2005. Two samples from symptomatic plants were collected in 2001 and six collected in 2005. Viral DNAs were extracted (2), and the PCR, with previously described primers, was used to detect the presence of begomoviral DNA-A (4), DNA-B (3), and associated satellite DNA (1). Begomoviral DNA-A was detected in one of the 2001 samples and in all 2005 samples. The PCR-amplified 1.5 kb viral DNA-A from one positive sample each from the 2001 and 2005 collections was cloned and sequenced. On the basis of the 1.5-kb DNA-A sequences, specific primers were designed to completely sequence the DNA-A component. The overlap between fragments obtained using primer walking ranged from 43 to 119 bp with 100% nt identities. The complete DNA-A sequences were determined for the two isolates as 2,734 bp (2001) (GenBank Accession No. DQ866135) and 2,733 bp (2005) (GenBank Accession No. EF199774). Sequence comparisons and analyses were performed using the DNAMAN Sequence Analysis Software (Lynnon Corporation, Vaudreuil, Quebec, Canada). The DNA-A of the begomovirus isolates each contained the conserved nanosequence-TAATATTAC and six open reading frames, including two in the virus sense and four in the complementary sense. On the basis of a 99% shared nucleotide sequence identity, they are considered isolates of the same species. BLASTn analysis and a comparison of the sequence with others available in the GenBank database ( http://www.ncbi.nlm.nih.gov ) indicated that the Taiwan virus shared its highest nt identity (more than 95%) with the Squash leaf curl Philippines virus (GenBank Accession No. AB085793). Virus-associated satellite DNA was not found in any of the samples. DNA-B was found in both samples, providing further evidence that the virus was the same as the bipartite Squash leaf curl Philippines virus. To our knowledge, this is the first report of Squash leaf curl Philippines virus in Taiwan. References: (1) R. W. Briddon et al. Virology 312:106, 2003. (2) R. L. Gilbertson et al. J. Gen. Virol. 72:2843, 1991. (3) S. K. Green et al. Plant Dis. 85:1286, 2001. (4) M. R. Rojas et al. Plant Dis. 77:340, 1993.
  5. Ploetz RC, Palmateer AJ, Geiser DM, Juba JH
    Plant Dis., 2007 May;91(5):639.
    PMID: 30780734 DOI: 10.1094/PDIS-91-5-0639A
    Roselle, Hibiscus sabdariffa var. sabdariffa, is an annual that is grown primarily for its inflated calyx, which is used for drinks and jellies. It is native from India to Malaysia, but was taken at an early date to Africa and is now widely grown in the tropics and subtropics (2). In late 2005, dying plants were noted by a producer in South Florida. Plants wilted, became chlorotic, and developed generally unthrifty, sparse canopies. Internally, conspicuous vascular discoloration was evident in these plants from the roots into the canopy. After 5 days on one-half-strength potato dextrose agar (PDA), salmon-colored fungal colonies grew almost exclusively from surface-disinfested 5 mm2 pieces of vascular tissue. On banana leaf agar, single-spored strains produced the following microscopic characters of Fusarium oxysporum: copious microconidia on monophialides, infrequent falcate macroconidia, and terminal and intercalary chlamydospores. Partial, elongation factor 1-α (EF1-α) sequences were generated for two of the strains, O-2424 and O-2425, and compared with previously reported sequences for the gene (3). Maximum parsimony analysis of sequences showed that both strains fell in a large, previously described clade of the F. oxysporum complex (FOC) that contained strains from agricultural hosts, as well as human clinical specimens (2; clade 3 in Fig. 4); many of the strains in this clade have identical EF1-α sequences. Strains of F. oxysporum recovered from wilted roselle in Egypt, O-647 and O-648 in the Fusarium Research Center collection, were distantly related to the Florida strains. We are not aware of other strains of F. oxysporum from roselle in other international culture collections. Roselle seedlings were inoculated with O-2424 and O-2425 by placing a mycelial plug (5 mm2, PDA) over a small incision 5 cm above the soil line and then covering the site with Parafilm. Parafilm was removed after 1 week, and plants were incubated under ambient temperatures (20 to 32°C) in full sun for an additional 5 weeks (experiment 1) or 7 weeks (experiment 2). Compared with mock-inoculated (wound + Parafilm) control plants, both O-2424 and O-2425 caused significant (P < 0.05) vascular disease (linear extension of discolored xylem above and below wound site) and wilting (subjective 1 to 5 scale); both isolates were recovered from affected plants. F. oxysporum-induced wilt of roselle has been reported in Nigeria (1) and Malaysia (4) where the subspecific epithet f. sp. rosellae was used for the pathogen. We are not aware of reports of this disease elsewhere. To our knowledge, this is the first report of F. oxysporum-induced wilt of roselle in the United States. Research to determine whether the closely related strains in clade 3 of the FOC are generalist plant pathogens (i.e., not formae speciales) is warranted. References: (1) N. A. Amusa et al. Plant Pathol. J. 4:122, 2005. (2) J. Morton. Pages 81-286 in: Fruits of Warm Climates. Creative Resource Systems, Inc., Winterville, NC, 1987. (3) K. O'Donnell et al. J. Clin. Microbiol. 42:5109, 2004. (4) K. H. Ooi and B. Salleh. Biotropia 12:31, 1999.
  6. Ko Y, Yao KS, Chen CY, Lin CH
    Plant Dis., 2007 Dec;91(12):1684.
    PMID: 30780618 DOI: 10.1094/PDIS-91-12-1684B
    Mango (Mangifera indica L.; family Anacardiaceae) is one of the world's most important fruit crops and is widely grown in tropical and subtropical regions. Since 2001, a leaf spot disease was found in mango orchards of Taiwan. Now, the disease was observed throughout (approximately 21,000 ha) Taiwan in moderate to severe form, thus affecting the general health of mango trees and orchards. Initial symptoms were small, yellow-to-brown spots on leaves. Later, the irregularly shaped spots, ranging from a few millimeters to a few centimeters in diameter, turned white to gray and coalesced to form larger gray patches. Lesions had slightly raised dark margins. On mature lesions, numerous black acervuli, measuring 290 to 328 μm in diameter, developed on the gray necrotic areas. Single conidial isolates of the fungus were identified morphologically as Pestalotiopsis mangiferae (Henn.) Steyaert (2,3) and were consistently isolated from the diseased mango leaves on acidified (0.06% lactic acid) potato dextrose agar (PDA) medium incubated at 25 ± 1°C. Initially, the fungus grew (3 mm per day) on PDA as a white, chalky colony that subsequently turned gray after 2 weeks. Acervuli developed in culture after continuous exposure to light for 9 to 12 days at 20 to 30°C. Abundant conidia oozed from the acervulus as a creamy mass. The conidia (17.6 to 25.4 μm long and 4.8 to 7.1 μm wide) were fusiform and usually straight to slightly curved with four septa. Three median cells were olivaceous and larger than the hyaline apical and basal cells. The apical cells bore three (rarely four) cylindrical appendages. Pathogenicity tests were conducted with either 3-day-old mycelial discs or conidial suspension (105 conidia per ml) obtained from 8- to 10-day-old cultures. Four leaves on each of 10 trees were inoculated. Before inoculation, the leaves were washed with a mild detergent, rinsed with tap water, and then surface sterilized with 70% ethanol. Leaves were wounded with a needle and exposed to either a 5-mm mycelial disc or 0.2 ml of the spore suspension. The inoculated areas were wrapped with cotton pads saturated with sterile water and the leaves were covered with polyethylene bags for 3 days to maintain high relative humidity. Wounded leaves inoculated with PDA discs alone served as controls. The symptoms described above were observed on all inoculated leaves, whereas uninoculated leaves remained completely free from symptoms. Reisolation from the inoculated leaves consistently yielded P. mangiferae, thus fulfilling Koch's postulates. Gray leaf spot is a common disease of mangos in the tropics and is widely distributed in Africa and Asia (1-3); however, to our knowledge, this is the first report of gray leaf spot disease affecting mango in Taiwan. References: (1) T. K. Lim and K. C. Khoo. Diseases and Disorders of Mango in Malaysia. Tropical Press. Malaysia, 1985. (2) J. E. M. Mordue. No. 676 in: CMI Descriptions of Pathogenic Fungi and Bacteria. Surrey, England, 1980. (3) R. C. Ploetz et al. Compendium of Tropical Fruit Diseases. The American Phytopathological Society. St. Paul, MN, 1994.
  7. Rossman AY, Goenaga R, Keith L
    Plant Dis., 2007 Dec;91(12):1685.
    PMID: 30780638 DOI: 10.1094/PDIS-91-12-1685C
    A stem canker disease on rambutan (Nephelium lappaceum L.) and litchi (Litchi chinensis Sonn. (Sapindaceae) was found in plants in Hawaii and Puerto Rico. A fungus associated with cankers was identified as Dolabra nepheliae C. Booth & Ting (1). Numerous black, stipitate, elongate ascomata were produced within cracks of cankers. These ascomata contain elongate, bitunicate asci amid unbranched, interthecial elements and thin, cylindrical, hyaline ascospores measuring 96 to 136 × 2.5 to 3.5 μm. This fungus was originally described from Malaysia on N. lappaceum (1) and is also known on pulasan (N. mutabile Blume) in Australia (2). Classified by the Food and Agriculture Organization as a 'minor disease', the canker appears to be relatively common in Hawaii and was most likely introduced into Puerto Rico on imported germplasm. Nevertheless, efforts are underway to study the potential damage of this disease as well as mechanisms of control, including introduction of disease resistant clones. Specimens have been deposited at the U.S. National Fungus Collections (Hawaii on Nephelium BPI 878189, Puerto Rico (PR) on Nephelium BPI 878188, and PR on Litchi BPI 878190). Although a specimen of D. nepheliae on L. chinensis was collected from Hawaii in 1984 by G. Wong and C. Hodges and deposited as BPI 626373, this fungus was not known on Nephelium spp. in Hawaii and was not previously known from Puerto Rico on either host. References: (1) C. Booth and W. P. Ting. Trans. Brit. Mycol. Soc. 47:235, 1964. (2) T. K. Lim and Y. Diczbalis. Rambutan. Page 306 in: The New Rural Industries. Online publication. Rural Industries Research and Development Corporation, Australia, 1997.
  8. Ahmadi P, Muharam FM, Ahmad K, Mansor S, Abu Seman I
    Plant Dis., 2017 Jun;101(6):1009-1016.
    PMID: 30682927 DOI: 10.1094/PDIS-12-16-1699-RE
    Ganoderma boninense is a causal agent of basal stem rot (BSR) and is responsible for a significant portion of oil palm (Elaeis guineensis) losses, which can reach US$500 million a year in Southeast Asia. At the early stage of this disease, infected palms are symptomless, which imposes difficulties in detecting the disease. In spite of the availability of tissue and DNA sampling techniques, there is a particular need for replacing costly field data collection methods for detecting Ganoderma in its early stage with a technique derived from spectroscopic and imagery data. Therefore, this study was carried out to apply the artificial neural network (ANN) analysis technique for discriminating and classifying fungal infections in oil palm trees at an early stage using raw, first, and second derivative spectroradiometer datasets. These were acquired from 1,016 spectral signatures of foliar samples in four disease levels (T1: healthy, T2: mildly-infected, T3: moderately infected, and T4: severely infected). Most of the satisfactory results occurred in the visible range, especially in the green wavelength. The healthy oil palms and those which were infected by Ganoderma at an early stage (T2) were classified satisfactorily with an accuracy of 83.3%, and 100.0% in 540 to 550 nm, respectively, by ANN using first derivative spectral data. The results further indicated that the sensitive frond number modeled by ANN provided the highest accuracy of 100.0% for frond number 9 compared with frond 17. This study showed evidence that employment of ANN can predict the early infection of BSR disease on oil palm with a high degree of accuracy.
  9. Rosli H, Mayfield DA, Batzer JC, Dixon PM, Zhang W, Gleason ML
    Plant Dis., 2017 Oct;101(10):1721-1728.
    PMID: 30676929 DOI: 10.1094/PDIS-02-17-0294-RE
    A warning system for the sooty blotch and flyspeck (SBFS) fungal disease complex of apple, developed originally for use in the southeastern United States, was modified to provide more reliable assessment of SBFS risk in Iowa. Modeling results based on previous research in Iowa and Wisconsin had suggested replacing leaf wetness duration with cumulative hours of relative humidity (RH) ≥97% as the weather input to the SBFS warning system. The purpose of the present study was to evaluate the performance of a RH-based SBFS warning system, and to assess the potential economic benefits for its use in Iowa. The warning system was evaluated in two separate sets of trials-trial 1 during 2010 and 2011, and trial 2 during 2013-2015-using action thresholds based on cumulative hours of RH ≥97% and ≥90%, respectively, in conjunction with two different fungicide regimes. The warning system was compared with a traditional calendar-based system that specified spraying at predetermined intervals of 10 to 14 days. In trial 1, use of the RH ≥97% threshold caused substantial differences between two RH sensors in recording number of hours exceeding the threshold. When both RH thresholds were compared for 2013-2015, on average, RH ≥90% resulted in a 53% reduction in variation of cumulative hours between two identical RH sensors placed adjacent to each other in an apple tree canopy. Although both the SBFS warning system and the calendar-based system resulted in equivalent control of SBFS, the warning system required fewer fungicide sprays than the calendar-based system, with an average of 3.8 sprays per season (min = 2; max = 5) vs. 6.4 sprays per season (min = 5; max = 8), respectively. The two fungicide regimes provided equivalent SBFS control when used in conjunction with the warning system. A partial budget analysis showed that using the SBFS warning system with a threshold of RH ≥90% was cost effective for orchard sizes of >1 ha. The revised warning system has potential to become a valuable decision support tool for Midwest apple growers because it reduces fungicide costs while protecting apples as effectively as a calendar-based spray schedule. The next step toward implementation of the SBFS warning system in the North Central U.S. should be multiyear field testing in commercial orchards throughout the region.
  10. Afolabi O, Milan B, Amoussa R, Koebnik R, Poulin L, Szurek B, et al.
    Plant Dis., 2014 Oct;98(10):1426.
    PMID: 30703943 DOI: 10.1094/PDIS-05-14-0504-PDN
    On May 9, 2013, symptoms reminiscent of bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola were observed on rice plants at the panicle emergence stage at Musenyi, Gihanga, and Rugombo fields in Burundi. Affected leaves showed water-soaked translucent lesions and yellow-brown to black streaks, sometimes with visible exudates on leaf surfaces. Symptomatic leaves were ground in sterile water and the suspensions obtained were subjected to a multiplex PCR assay diagnostic for X. oryzae pathovars (3). Three DNA fragments (331, 691, and 945 bp) corresponding to X. oryzae pv. oryzicola were observed after agarose gel electrophoresis. Single bacterial colonies were then isolated from surface-sterilized, infected leaves after grinding in sterile water and plating of 10-fold dilutions of the cell suspension on semi-selective PSA medium (4). After incubation at 28°C for 5 days, each of four independent cultures yielded single yellow, mucoid Xanthomonas-like colonies (named Bur_1, Bur_2, Bur_6, and Bur_7) that resembled the positive control strain MAI10 (1). These strains originated from Musenyi (Bur_1), Gihanga (Bur_2), and Rugumbo (Bur_6 and Bur_7). Multiplex PCR assays on the four putative X. oryzae pv. oryzicola strains yielded the three diagnostic DNA fragments mentioned above. All strains were further analyzed by sequence analysis of portions of the gyrB gene using the universal primers gyrB1-F and gyrB1-R for PCR amplification (5). The 762-bp DNA fragment was identical to gyrB sequences from the Asian X. oryzae pv. oryzicola strains BLS256 (Philippines), ICMP 12013 (China), LMG 797 and NCPPB 2921 (both Malaysia), and from the African strain MAI3 (Mali) (2). The partial nucleotide sequence of the gyrB gene of Bur_1 was submitted to GenBank (Accession No. KJ801400). Pathogenicity tests were performed on greenhouse-grown 4-week-old rice plants of the cvs. Nipponbare, Azucena, IRBB 1, IRBB 2, IRBB 3, IRBB 7, FKR 14, PNA64F4-56, TCS 10, Gigante, and Adny 11. Bacterial cultures were grown overnight in PSA medium and re-suspended in sterile water (1 × 108 CFU/ml). Plants were inoculated with bacterial suspensions either by spraying or by leaf infiltration (1). For spray inoculation, four plants per accession and strain were used while three leaves per plant and four plants per accession and strain were inoculated by tissue infiltration. After 15 days of incubation in a BSL-3 containment facility (27 ± 1°C with a 12-h photoperiod), the spray-inoculated plants showed water-soaked lesions with yellow exudates identical to those seen in the field. For syringe-infiltrated leaves, the same symptoms were observed at the infiltrated leaf area. Re-isolation of bacteria from symptomatic leaves yielded colonies with the typical Xanthomonas morphology that were confirmed by multiplex PCR to be X. oryzae pv. oryzicola, thus fulfilling Koch's postulates. Bur_1 has been deposited in the Collection Française de Bactéries Phytopathogènes as strain CFBP 8170 ( http://www.angers-nantes.inra.fr/cfbp/ ). To our knowledge, this is the first report of X. oryzae pv. oryzicola causing bacterial leaf streak on rice in Burundi. Further surveys will help to assess its importance in the country. References: (1) C. Gonzalez et al., Mol. Plant Microbe Interact. 20:534, 2007. (2) A. Hajri et al. Mol. Plant Pathol. 13:288, 2012. (3) J. M. Lang et al. Plant Dis. 94:311, 2010. (4) L. Poulin et al. Plant Dis. 98:1423, 2014. (5) J. M. Young et al. Syst. Appl. Microbiol. 31:366, 2008.
  11. Wu JB, Zhang CL, Mao PP, Qian YS, Wang HZ
    Plant Dis., 2014 Jul;98(7):996.
    PMID: 30708927 DOI: 10.1094/PDIS-09-13-1006-PDN
    Dendrobium (Dendrobium candidum Wall. ex Lindl.) is a perennial herb in the Orchidaceae family. It has been used as traditional medicinal plant in China, Malaysia, Laos, and Thailand (2). Fungal disease is one of the most important factors affecting the development of Dendrobium production. During summer 2012, chocolate brown spots were observed on leaves of 2-year-old Dendrobium seedlings in a greenhouse in Hangzhou, Zhejiang Province, China, situated at 30.26°N and 120.19°E. Approximately 80% of the plants in each greenhouse were symptomatic. Diseased leaves exhibited irregular, chocolate brown, and necrotic lesions with a chlorotic halo, reaching 0.8 to 3.2 cm in diameter. Affected leaves began to senesce and withered in autumn, and all leaves of diseased plants fell off in the following spring. Symptomatic leaf tissues were cut into small pieces (4 to 5 mm long), surface-sterilized (immersed in 75% ethanol for 30 s, and then 1% sodium hypochlorite for 60 s), rinsed three times in sterilized distilled water, and then cultured on potato dextrose agar (PDA) amended with 30 mg/liter of kanamycin sulfate (dissolved in ddH2O). Petri plates were incubated in darkness at 25 ± 0.5°C, and a grey mycelium with a white border developed after 4 days. Fast-growing white mycelia were isolated from symptomatic leaf samples, and the mycelia became gray-brown with the onset of sporulation after 5 days. Conidia were unicellular, black, elliptical, and 11.4 to 14.3 μm (average 13.1 μm) in diameter. Based on these morphological and pathogenic characteristics, the isolates were tentatively identified as Nigrospora oryzae (1). Genomic DNA was extracted from a representative isolate F12-F, and a ~600-bp fragment was amplified and sequenced using the primers ITS1 and ITS4 (4). BLAST analysis showed that F12-F ITS sequence (Accession No. KF516962) had 99% similarity with the ITS sequence of an N. oryzae isolate (JQ863242.1). Healthy Dendrobium seedlings (4 months old) were used in pathogenicity tests under greenhouse conditions. Leaves were inoculated with mycelial plugs (5 mm in diameter) from a 5-day-old culture of strain F12-F, and sterile PDA plugs served as controls. Seedlings were covered with plastic bags for 5 days and maintained at 25 ± 0.5°C and 80 ± 5% relative humidity. Eight seedlings were used in each experiment, which was repeated three times. After 5 days, typical chocolate brown spots and black lesions were observed on inoculated leaves, whereas no symptoms developed on controls, which fulfilled Koch's postulates. This shows that N. oryzae can cause leaf spot of D. candidum. N. oryzae is a known pathogen for several hosts but has not been previously reported on any species of Dendrobium in China (3). To our knowledge, on the basis of literature, this is the first report of leaf spot of D. candidum caused by N. oryzae in China. References: (1) H. J. Hudson. Trans. Br. Mycol. Soc. 46:355, 1963. (2) Q. Jin et al. PLoS One. 8(4):e62352, 2013. (3) P. Sharma et al. J. Phytopathol. 161:439, 2013. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.
  12. Li BX, Shi T, Liu XB, Lin CH, Huang GX
    Plant Dis., 2014 Jul;98(7):1008.
    PMID: 30708897 DOI: 10.1094/PDIS-01-14-0004-PDN
    Rubber tree (Hevea brasiliensis) is an important crop in tropical regions of China. In October 2013, a new stem rot disease was found on cv. Yunyan77-4 at a rubber tree plantation in Hekou, Yunnan Province. There were about 100 plants, and diseased rubber trees accounted for 30% or less. Initially, brown-punctuate secretion appeared on the stem, which was 5 to 6 cm above the ground. Eventually, the secretion became black and no latex produced from the rubber tree bark. After removing the secretion, the diseased bark was brown putrescence, but the circumambient bark was normal. Upon peeling the surface bark, the inner bark and xylem had brown rot and was musty. The junction between health and disease was undulate. On the two most serious plants, parts of leaves on the crown were yellow, and the root near the diseased stem was dry and puce. The pathogen was isolated and designated HbFO01; the pathogenicity was established by following Koch's postulates. The pathogen was cultivated on a potato dextrose agar (PDA) plate at 28°C for 4 days. Ten plants of rubber tree cv. Yunyan77-4 were selected from a disease-free plantation in Haikou, Hainan Province, and the stem diameter was about 7 cm. The bark of five plants was peeled, and one mycelium disk with a diameter of 1 cm was inserted into the cut and covered again with the bark. The other five plants were treated with agar disks as controls. The inoculation site was kept moist for 2 days, and then the mycelium and agar disk were removed. On eighth day, symptoms similar to the original stem lesions were observed on stems of inoculated plants, while only scars formed on stems of control plants. The pathogen was re-isolated from the lesions of inoculated plants. On PDA plates, the pathogen colony was circular and white with tidy edges and rich aerial hyphae. Microscopic examination showed microconidia and chlamydospores were produced abundantly on PDA medium. The falciform macroconidia were only produced on lesions and were slightly curved, with a curved apical cell and foot shaped to pointed basal cell, usually 3-septate, 16.2 to 24.2 × 3.2 to 4.0 μm. Microconidia were produced in false heads, oval, 0-septate, 6.2 to 8.2 × 3.3 to 3.8 μm, and the phialide was cylindrical. Chlamydospores were oval, 6.4 to 7.2 × 3.1 to 3.8 μm, alone produced in hypha. Morphological characteristics of the specimen were similar to the descriptions for Fusarium oxysporum (2). Genomic DNA of this isolate was extracted with a CTAB protocol (4) from mycelium and used as a template for amplification of the internal transcribed spacer (ITS) region of rDNA with primer pair ITS1/ITS4 (1). The full length of this sequence is 503 nt (GenBank Accession No. KJ009335), which exactly matched several sequences (e.g., JF807394.1, JX897002.1, and HQ451888.1) of F. oxysporum. Williams and Liu had listed F. oxysporum as the economically important pathogen of Hevea in Asia (3), while this is, to our knowledge, the first report of stem rot caused by F. oxysporum on rubber tree in China. References: (1) D. E. L. Cooke et al. Fungal Genet. Biol. 30:17, 2000. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, 2006. (3) T. H. Williams and P. S. W. Liu. A host list of plant diseases in Sabah, Malaysia, 1976. (4) J. R. Xu et al. Genetics 143:175, 1996.
  13. Zhou JN, Liu SY, Chen YF, Liao LS
    Plant Dis., 2015 Mar;99(3):416.
    PMID: 30699721 DOI: 10.1094/PDIS-10-14-1025-PDN
    Clausena lansium, also known as wampee (Clausena wampi), is a plant species native to China, Vietnam, the Philippines, Malaysia, and Indonesia, where it is widely cultivated, and also grown in India, Sri Lanka, Queensland, Florida, and Hawaii, but less frequently (3). The fruit can be consumed fresh or made into juice, jam, or succade. In summer to fall 2014, a soft rot disease was found in a wampee planting region in Yunan County, Guangdong Province, China. On Sept. 18, we collected diseased samples from a wampee orchard with about 20% disease incidence. The infected fruit initially showed pinpoint spots on the peel, water-soaked lesions, and light to dark brown discoloration. Spots expanded in 2 days, and tissues collapsed after 5 days. Severely affected fruit showed cracking or nonodorous decay. Five diseased samples were collected, and causal agents were isolated from symptomatic tissues 1 cm under the peel after surface sterilization in 0.3% NaOCl for 10 min and rinsing in sterile water three times. Tissues were placed on a Luria Bertani (LB) plate for culture. Ten representative isolates were selected for further characterization. No colony was isolated from healthy tissues. Colonies were round, smooth, with irregular edges, and produced a yellow pigment in culture. Biolog identification (Version 4.20.05) showed that all strains were gram negative, negative for indole production, and utilized glucose, maltose, trehalose, sucrose, D-lactose, and pectin but not sorbitol or gelatin. The isolates were identified as Pantoea agglomerans (SIM 0.69). Multilocus sequence analysis (MLSA) was conducted for rapid classification of the strains. Sequences of atpD, gyrB, infB, and rpoB were amplified using corresponding primers (2). All sequences of the 10 isolates were identical in each gene. BLASTn was performed, and maximum likelihood trees based on the concatenated nucleotide sequences of the four genes were constructed using MEGA6. Bootstrap values after 1,000 replicates were expressed as percentages. Results showed that the tested strain named CL1 was most homologous to P. anthophila, with 98% identity for atpD (KM521543), 100% for gyrB (KM521544), infB (KM521545), and rpoB (KM521546). The 16S rRNA sequence (KM521542) amplified by primers 27f and 1492r shared 99% identity with that of P. anthophila M19_2C (JN644500). P. anthophila was previously reclassified from P. agglomerans (3); therefore, we suggest naming this wampee pathogen P. anthophila. Subsequently, 10 wampee fruits were injected with 20 μl of bacterial suspension (1 × 108 CFU/ml) of strains CL1 and CL2, respectively, and another 10 were injected with 20 μl of LB medium as controls, all kept at 28°C for 4 days. Symptoms similar to those of natural infections were observed on inoculated fruits but not on the negative controls. Bacteria were isolated from diseased tissues and further identified as P. anthophila by gyrB sequencing. P. anthophila was reported to naturally infect balsam and marigold (1,2). To our knowledge, this is the first report of P. anthophila naturally causing soft rot disease and cracking on C. lansium (wampee). References: (1) C. Brady et al. Syst. Appl. Microbiol. 31:447, 2008. (2) C. Brady et al. Int. J. Syst. Evol. Microbiol. 59:2339, 2009. (3) J. Morton. Fruits of Warm Climates. Echo Point Books & Media, Miami, FL, 1987.
  14. Ma WJ, Yang X, Wang XR, Zeng YS, Liao MD, Chen CJ, et al.
    Plant Dis., 2014 Jul;98(7):991.
    PMID: 30708879 DOI: 10.1094/PDIS-06-13-0609-PDN
    Hylocereus undatus widely grows in southern China. Some varieties are planted for their fruits, known as dragon fruits or Pitaya, while some varieties for their flowers known as Bawanghua. Fresh or dried flowers of Bawanghua are used as routine Chinese medicinal food. Since 2008, a serious anthracnose disease has led to great losses on Bawanghua flower production farms in the Baiyun district of Guangzhou city in China. Anthracnose symptoms on young stems of Bawanghua are reddish-brown, sunken lesions with pink masses of spores in the center. The lesions expand rapidly in the field or in storage, and may coalesce in the warm and wet environment in spring and summer in Guangzhou. Fewer flowers develop on infected stems than on healthy ones. The fungus overwinters in infected debris in the soil. The disease caused a loss of up to 50% on Bawanghua. Putative pathogenic fungi with whitish-orange colonies were isolated from a small piece of tissue (3 × 3 mm) cut from a lesion margin and cultured on potato dextrose agar in a growth chamber at 25°C, 80% RH. Dark colonies with acervuli bearing pinkish conidial masses formed 14 days later. Single celled conidia were 11 to 18 × 4 to 6 μm. Based on these morphological characteristics, the fungi were identified as Colletotrichum gloeosporioides (Penz.) Penz. & Sacc (2). To confirm this, DNA was extracted from isolate BWH1 and multilocus analyses were completed with DNA sequence data generated from partial ITS region of nrDNA, actin (ACT) and glutamine synthetase (GS) nucleotide sequences by PCR, with C. gloeosporioides specific primers as ITS4 (5'-TCCTCCGCTTATTGATATGC-3') / CgInt (5'-GGCCTCCCGCCTCCGGGCGG-3'), GS-F (5'-ATGGCCGAGTACATCTGG-3') / GS-R (5'-GAACCGTCGAAGTTCCAC-3') and actin-R (5'-ATGTGCAAGGCCGGTTTCGC-3') / actin-F (5'-TACGAGTCCTTCTGGCCCAT-3'). The sequence alignment results indicated that the obtained partial ITS sequence of 468 bp (GenBank Accession No. KF051997), actin sequence of 282 bp (KF712382), and GS sequence of 1,021 bp (KF719176) are 99%, 96%, and 95% identical to JQ676185.1 for partial ITS, FJ907430 for ACT, and FJ972589 for GS of C. gloeosporioides previously deposited, respectively. For testing its pathogenicity, 20 μl of conidia suspension (1 × 106 conidia/ml) using sterile distilled water (SDW) was inoculated into artificial wounds on six healthy young stems of Bawanghua using sterile fine-syringe needle. Meanwhile, 20 μl of SDW was inoculated on six healthy stems as a control. The inoculated stems were kept at 25°C, about 90% relative humidity. Three independent experiments were carried out. Reddish-brown lesions formed after 10 days, on 100% stems (18 in total) inoculated by C. gloeosporioides, while no lesion formed on any control. The pathogen was successfully re-isolated from the inoculated stem lesions on Bawanghua. Thus, Koch's postulates were fulfilled. Colletotrichum anthracnose has been reported on Pitaya in Japan (3), Malaysia (1) and in Brazil (4). To our knowledge, this is the first report of anthracnose disease caused by C. gloeosporioides on young stems of Bawanghua (H. undatus) in China. References: (1) M. Masyahit et al. Am. J. Appl. Sci. 6:902, 2009. (2) B. C. Sutton. Page 402 in: Colletotrichum Biology, Pathology and Control. J. A. Bailey and M. J. Jeger, eds. CAB International, Wallingford, UK, 1992. (3) S. Taba et al. Jpn. J. Phytopathol. 72:25, 2006. (4) L. M. Takahashi et al. Australas. Plant Dis. Notes 3:96, 2008.
  15. Mahmodi F, Kadir JB, Wong MY, Nasehi A, Puteh A, Soleimani N
    Plant Dis., 2013 Jun;97(6):841.
    PMID: 30722625 DOI: 10.1094/PDIS-10-12-0944-PDN
    Soybean (Glycine max L.) is one of the most economically important crops in the world, and anthracnose is known to infect soybean in most countries. Colletotrichum truncatum is the common pathogen causing anthracnose of soybean. However, at least five species of Colletotrichum have been reported on soybean worldwide (2). In July 2010, anthracnose symptoms were observed on soybean in the experimental fields of the agriculture station in Ladang Dua, University Putra Malaysia located in Selangor state of Malaysia. Symptoms were initially observed on a few plants randomly within one field, but after 4 weeks, the disease was found in two additional fields scattered across an area of 1 km2. Pinkish-brown lesions were observed on the pods, and the formation of dark lesions on the leaves and stems was sometimes followed by stem girdling, dieback, and distorted growth. At later stages, numerous epidermal acervuli developed in the lesions, and mucilaginous conidial masses appeared during periods of high relative humidity. Conidia produced in acervuli were straight, cylindric, hyaline, and aseptate, with both ends rounded. Conidia measured (mean ± SD) 14.2 ± 0.6 × 3.6 ± 0.7 μm, and the L/W ratio was 3.95 μm. Six isolates of the fungus were obtained and identified as C. gloeosporioides on the basis of morphological characterization (3). The isolates were deposited in the University Putra of Malaysia Culture Collection (UPMCC). PDA cultures were white at first and subsequently became grayish to pink to reddish-brown. Amplification and sequence analysis of coding and none-coding regions of the ITS-rDNA (GenBank JX669450), actin (JX827430), β-tubulin (JX827454), histone (JX827448), chitin synthase (JX827436), and glyceraldehyde-3-phosphate dehydrogenase (JX827442) obtained from the representative isolate, CGM50, aligned with deposited sequences from GenBank and revealed 99 to 100% sequence identity with C. gloeosporioides strains (JX258757, JX009790, GQ849434, HM575301, JQ005413, and JX00948 from GenBank). One representative isolate, CGM50, was used for pathogenicity testing. Four non-infected detached leaves and pods of 24-day-old G. max var. Palmetto were surface-sterilized and inoculated by placing 10 μl of a conidial suspension (106 conidia ml-1) using either the wound/drop or non-wound/drop method (4), with 10 μl distilled water as a negative control. Leaves and pods were incubated at 25°C, 98% RH. The experiment was repeated twice. Five days after inoculation, the development of typical field symptoms, including acervuli formation, occurred on the leaves and pods of inoculated plants, but not on the negative controls. A fungus with the same colony and conidial morphology as CGM50 was recovered from the lesions on the inoculated leaves and pods. Anthracnose caused by C. gloeosporioides on soybean plants has been reported previously in different countries, but not in Malaysia (3). Geographically, the climate of Malaysia is highly conducive to maintain and cause outbreaks of anthracnose all year round; thus, the development of management recommendations will be inevitable for anthracnose control. To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on soybean in Malaysia. References: (1) U. Damm et al. Fungal Diversity 39:45, 2009. (2) S. L. Chen et al. J. Phytopathol. 154:654, 2006. (3) B. C. Sutton. The Genus Glomerella and its Anamorph Colletotrichum. CAB International, Wallingford, UK, 1992. (4) P. P. Than et al. Plant Pathol. 57:562, 2008. ERRATUM: A correction was made to this Disease Note on May 19, 2014. The author N. Soleimani was added.
  16. Intan Sakinah MA, Suzianti IV, Latiffah Z
    Plant Dis., 2013 Jul;97(7):991.
    PMID: 30722542 DOI: 10.1094/PDIS-10-12-0985-PDN
    Banana is the second largest cultivated fruit crop in Malaysia, and is cultivated for both the domestic market and also for export. Anthranose is a well-known postharvest disease of banana and with high potential for damaging market value, as infection commonly occurs during storage. Anthracnose symptoms were observed on several varieties of banana such as mas, berangan, awak, nangka, and rastali in the states of Perak and Penang between August and October 2011. Approximately 80% of the fruits became infected with initial symptoms characterized as brown to black spots that later became sunken lesions with orange or salmon-colored conidial masses. Infected tissues (5 × 5 mm) were surface sterilized by dipping in 1% sodium hypochlorite (NaOCl) for 3 to 5 min, rinsed with sterile distilled water, and plated onto potato dextrose agar (PDA). Direct isolation was done by transferring the conidia from conidial masses using an inoculation loop and plating onto PDA. For both methods, the PDA plates were incubated at 27 ± 1°C with cycles of 12 h light and 12 h darkness. Visible growth of mycelium was observed after 4 to 5 days of incubation. Twenty isolates with conidial masses were recovered after 7 days of incubation. The isolates produced grayish white to grayish green and grey to moss dark green colony on PDA, pale orange conidial masses, and fusiform to cylindrical and hyaline conidia with an average size of 15 to 19 × 5 to 6 μm. Appresoria were ovate to obovate, dark brown, and 9 to 15 × 7 to 12 μm and setae were present, slightly swollen at the base, with a tapered apex, and brown. The cultural and morphological characteristics of the isolates were similar to those described for C. gleosporioides (1,2,3). All the C. gloeosporioides isolates were deposited in culture collection at Plant Pathology Lab, University Sains Malaysia. For confirmation of the identity of the isolates, ITS regions were sequenced using ITS4 and ITS5 primers. The isolates were deposited in GenBank with accessions JX163228, JX163231, JX163201, JX163230, JX163215, JX163223, JX163219, JX163202, JX163225, JX163222, JX163206, JX163218, JX163208, JX163209, JX163210, JX431560, JX163212, JX163213, JX431540, and JX431562. The resulting sequences showed 99% to 100% similarity with multiple C. gloeosporioides isolates in GenBank. Pathogenicity tests were conducted using mas, berangan, awak, nangka, and rastali bananas. Fruit surfaces were sterilized with 70% ethanol and wounded using a sterile scalpel. Two inoculation techniques were performed separately: mycelia plug and conidial suspension. Mycelial disc (5 mm) and a drop of 20 μl spore suspension (106 conidia/ml) were prepared from 7-day-old culture and placed on the fruit surface. The inoculated fruits were incubated at 27 ± 1°C for 10 days at 96.1% humidity. After 3 to 4 days of inoculation, brown to black spotted lesions were observed and coalesced to become black sunken lesions. Similar anthracnose symptoms were observed on all banana varieties tested. C. gloeosporioides was reisolated from the anthracnose lesions of all the inoculated fruit in which the cultural and morphological characteristics were the same as the original isolates. To our knowledge, this is the first report of C. gloeosporioides causing anthracnose of Musa spp. in Malaysia. References: (1) P. F. Cannon et al. Mycotaxon 104:189, 2008. (2) J. E. M. Mordue. Glomerella cingulata. CMI Description of Pathogenic Fungi and Bacteria, No. 315. CAB International,1971. (3) H. Prihastuti et al. Fungal Diversity 39:89, 2009.
  17. Keith LM, Matsumoto TK
    Plant Dis., 2013 Jan;97(1):146.
    PMID: 30722309 DOI: 10.1094/PDIS-07-12-0702-PDN
    Mangosteen (Garcinia mangostana L.) is a tropical evergreen tree that produces one of the most prized tropical fruits, commonly known as the "Queen of the Fruits.″ Mangosteen has the potential to occupy a rapidly expanding niche market in Hawaii. In October 2009, a disease was observed that produced brown leaf spots and blotches surrounded by bright yellow halos at a mangosteen orchard located in Hakalau, Hawaii (19° 53' 49″ N, 155° 7' 35″ W). Recently transplanted 10+ year old trees were 95 to 100% infected. Pieces of infected leaves and stems were surface-sterilized, plated on potato dextrose agar (PDA), and incubated at 24°C ± 1°C for 21 days. The fungus growing on PDA was pale buff with sparse aerial mycelium and acervuli containing black, slimy spore masses. Single spore isolates were used for the morphological characteristics and molecular analysis. Conidia were 5-celled. Apical and basal cells were hyaline; the three median cells were umber to olivaceous. Conidia (n = 50) were 24.3 ± 0.2 × 7.5 ± 0.1 μm, with apical appendages, typically three, averaging 24.3 ± 0.4 μm long, and a basal appendage averaging 6.7 ± 0.2 μm long. DNA sequences were obtained from the β-tubulin gene and the internal transcribed spacer (ITS1 and ITS2) and 5.8S regions of the rDNA to confirm the identification. The morphological descriptions and measurements were similar to P. virgatula (Kleb.) Steyaert (1). Although sequence data of the ITS region (GenBank Accession No. JN542546) supports the identity of the fungus as P. virgatula, the taxonomy of this genus remains confused since there are only a few type cultures, so it is impossible to use sequences in GenBank to reliably clarify species names (2). To confirm pathogenicity, six leaves of two 3-year-old seedlings were inoculated. Seven-day-old cultures grown on 10% V8 agar at 24°C under continuous fluorescent lighting were used for inoculations. The inoculum consisted of spore suspensions in sterile distilled water adjusted to 6 × 105 conidia/ml. Using a fine haired paint brush, the inoculum was brushed onto the youngest leaves, while sterile distilled water was used as the control. The plants were incubated in a clear plastic bag placed on the laboratory bench at 24°C for 48 hours, then placed on a greenhouse bench and observed weekly for symptoms. After 14 days, leaf spots ranging in size from pinpoint to 5.4 mm in diameter with a distinctive yellow halo were present. Within 35 days, the leaf spots enlarged to leaf blotches ranging in size from 11.5 × 13.3 mm up to 28.3 × 34.6 mm with brown centers and a distinctive yellow halo identical to the field symptoms. A Pestalotiopsis sp. identical to that used to inoculate the seedlings was recovered from the leaf spots and blotches, confirming Koch's postulates. The experiment was repeated twice. Pestalotiopsis leaf blight has been reported in other countries growing mangosteen, including Thailand, Malaysia, and North Queensland, Australia (3). However, to our knowledge, this is the first report of a Pestalotiopsis sp. causing a disease on mangosteen in Hawaii. Although this disease is considered a minor problem in the literature (3), effective management practices should be established to avoid potential production losses. References: (1) E. F. Guba. Monograph of Pestalotia and Monochaetia. Harvard University Press, Cambridge, MA. 1961. (2) S. S. N. Maharachchikumbura et al. Fungal Div. 50:167, 2011. (3) R. C. Ploetz. Diseases of Tropical Fruit Crops. CABI Publishing. Wallingford, Oxfordshire, UK, 2003.
  18. Almaliky BSA, Abidin MAZ, Kader J, Wong MY
    Plant Dis., 2013 Jan;97(1):143.
    PMID: 30722276 DOI: 10.1094/PDIS-07-12-0627-PDN
    In April and June 2010, coconut seedlings with symptoms of very slow growth, yellowing of leaves, and general abnormal leaf growth were observed in germination beds in Teluk Intan, Perak, Malaysia. The roots were soft, rotten, and brown, extending upward and downward from these lesions. Rhizomorphs and basidiocarps were produced on coconut seeds near the germination eye and identified as Marasmiellus palmivorus according description by Turner (2). Three isolates were obtained by plating surface sterilized symptomatic roots and basidiocarp on malt extract agar (MEA) amended with 85% lactic acid (1 ml added to 11 of the medium). To confirm the identity of the fungus, genomic DNA was extracted from mycelia and basidiocarps of isolates and the large subunit (LSU) region was amplified and sequenced using LR0R/LR7 primers (3). All isolates had identical LSU sequences (GenBank Accession No. JQ654233 to JQ654235). Sequences were identical to each other and 99% similar to a M. palmivorus sequence deposited in the NCBI database (Accession No. AY639434).To confirm pathogenicity, three isolates of M. palmivorus that were obtained from symptomatic plant tissue was inoculated onto seeds of Malaysian Red Dwarf variety. Each isolate was grown in 100 ml of malt extract broth in 250 ml Erlenmeyer flasks and incubated at 27 ± 2°C for 5 days on an orbital shaker (125 rpm). The resulting culture was passed through two layers of sterile cloth. Mycelial suspension was obtained by blending mycelia in 100 ml of sterile water. Seeds were sterilized by soaking in 10% v/v sodium hypochlorite in distilled water for 3 min. The seeds were then rinsed three times over running tap water. The calyx portion of the seed was removed and five holes were made around the germination eye. The seeds were inoculated by injecting 2 ml of suspension into each hole. The control seeds were inoculated with sterile distilled water only. The seeds were transferred to 40-cm diameter plastic pots containing a mixture of sand, soil, and peat in the ratio of 3:2:1, respectively, and steam treated at 100°C for 1.5 h. Pots were placed in the glasshouse with normal exposures to day-night cycles, temperatures of 29 ± 4°C, and high relative humidity (85 to 95%) achieved by spraying water twice daily. After 2 months, 75% of the inoculated seeds failed to germinate. It was speculated that the artificial inoculum was higher than under germination bed conditions. Rhizomorphs and basidiocarps were produced on husk seeds near the germination eye. Seedlings that emerged successfully developed symptoms similar to those observed in the germination bed. No symptoms developed in the noninoculated seeds and seedlings. At 80 days post inoculation, basidiocarps were observed emerging from three diseased seedlings near the germination eye. Three reisolations were made on MEA from root lesions surface sterilized. Pathogenicity tests and LSU sequence analyses indicated that M. palmivorus is the causal agent of the symptoms observed on coconut seedlings. M. palmivorus was first recorded on coconuts and oil palm in the 1920s (1) and attacks the fruit and the petiole on oil palm (2). To our knowledge, this is the first report of M. palmivorus causing post-emergence damping off on coconut seedlings. References: (1) K. G. Singh. A check-list of host and diseases in Malaysia. Ministry of Agriculture and Fisheries, Malaysia, 1973. (2) P. D. Turner. Oil palm diseases and disorders. Oxford University Press. 1981. (3) R. Vilgalys et al. J. Bacteriol. 172:4238, 1990.
  19. Golkhandan E, Kamaruzaman S, Sariah M, Abidin MZZ, Nasehi A, Nazerian E
    Plant Dis., 2013 Aug;97(8):1109.
    PMID: 30722490 DOI: 10.1094/PDIS-01-13-0042-PDN
    Symptoms of water-soaked lesions and soft rot were first observed in June 2011 on bell pepper fruits (Capsicum annuum cv. Annuum) in the two main regions of pepper production in Malaysia (Cameron Highlands and Johor State). Economic losses exceeded 40% in severely infected fields and greenhouses with the estimated disease incidence of 70%. In pepper fruits damaged by insects, sunscald, or other factors, symptoms initially appeared in the peduncle and calyx tissues and entire fruits were turned into watery masses within 2 to 6 days. Fruits infected in the field tended to collapse and hang on the plant. When the contents leaked out, the outer skin of the fruit dried and remained attached to the plant. Field-grown transplants and infected soil were identified as probable sources of inocula. A total of 50 attached fruits were collected from 10 pepper fields and greenhouses located in the two growing regions. Tissue from the margins of water-soaked lesions was surface-sterilized in 1% NaOCl for 2 min, rinsed in sterile water, dried, and plated onto nutrient agar (NA) and eosin methylene blue agar (EMB) media (3). A similar bacterium was isolated from all samples. After 2 days, white to creamy bacterial colonies on NA and emerald green colonies on EMB developed. Five independent strains were subjected to further biochemical, molecular, and pathogenicity tests. Bacterial strains were gram-negative, motile rods, grew at 37°C, were facultatively anaerobic, oxidase-negative, phosphatase-negative, and catalase-positive. They degraded pectate, were sensitive to erythromycin, did not utilize Keto-methyl glucoside, were indole production-negative, and reduced sugars from sucrose (3). Acid production was negative from sorbitol and arabitol, but positive from melibiose and citrate. PCR amplification of the pel gene by Y1 and Y2 primers produced a 434-bp fragment (2). Amplification of the intergenic transcribed spacer (ITS) region by G1 and L1 primers (4) gave two amplicons ca. 550 and 580 bp long. The expected amplicon was not produced with any of the strains using primers Br1f/L1r and Eca1f/Eca2r (1), whereas a 550-bp PCR product, typical of Pectobacterium carotovorum subsp. carotovorum, was obtained with primers EXPCCF and EXPCCR (1). Based on biochemical and molecular characteristics, and analysis of PCR-RFLP of 16S-ITS-23R rRNA genes using Rsa I enzyme (4), all five bacterial strains were identified as P. carotovorum subsp. carotovorum. BLAST analysis of the 16S rRNA sequence (GenBank Accession No KC189032) showed 100% identity to the 16S rRNA of P. carotovorum subsp. carotovorum strain PPC192. For pathogenicity tests, four mature pepper fruits of cv. Annuum were inoculated by injecting 10 μl of a bacterial suspension (108 CFU/ml) into pericarps and the fruits were incubated in a moist chamber at 80 to 90% relative humidity and 30°C. After 72 h, water-soaked lesions similar to those observed in the fields and greenhouses were observed and bacteria with the same characteristics were consistently reisolated, thereby fulfilling Koch's postulates. Symptoms were not observed on water-inoculated controls. References: (1) S. Baghaee-Ravari et al. Eur. J. Plant Pathol. 129:413, 2001. (2) A. Darraas et al. Appl. Environ. Microbiol. 60:1437, 1994. (3) N. W Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society Press, St Paul, MN, 2001. (4) I. K. Toth et al. Appl. Environ. Microbiol. 67:4070, 2001.
  20. Mahmodi F, Kadir JB, Puteh A, Wong MY, Nasehi A
    Plant Dis., 2013 Feb;97(2):287.
    PMID: 30722331 DOI: 10.1094/PDIS-08-12-0756-PDN
    In July 2011, a severe outbreak of pod and stem blight was observed on lima bean (Phaseolus lunatus L.) plants grown in the Cameron Highlands, located in Pahang State, Malaysia. Disease incidence varied from 33 to 75% in different fields. Pods and stems exhibited withered, light brown to reddish brown necrotic areas. Sub-circular and brown lesions were produced on the leaves. These lesions varied in size, often reaching a diameter of 1 to 2 cm. After tissue death, numerous pycnidia were observed on the surface of the pod or stem. The pycnidia diameter varied from 155 to 495 μm, averaging 265.45 μm, and on the surface of the pod or stem, pycnidia were often arranged concentrically or linearly, respectively. Pycnidiospores were hyaline, 1-celled, usually straight, and rarely, slightly curved. The α-spores varied from 5.5 to 9.0 × 2.5 to 4.0 μm; averaging 7.3 × 3.5 μm. The β-spores found either alone or with pycnidiospores in pycnidia were slender, hyaline, nonseptate, and straight or curved. Size varied from 15.8 to 38.0 × 1.3 to 2.1 μm; averaging 25.86 × 1.8 μm. The colony characteristics were recorded from pure cultures grown on potato dextrose agar plates, and incubated in darkness for 7 days at 25 °C, then exposed to 16/8 h light and dark periods at 25°C for a further 14 to 21 days. Morphological characteristics of the colonies and spores on PDA matched those described for P. phaseolorum var. sojae (2). Colonies were white, compact, with wavy mycelium and stromata with pycnidia that contained abundant β-spores. Sequence analysis of the ribosomal DNA internal transcribed spacer obtained from the Malaysian isolate FM1 (GenBank Accession No. JQ514150) using primers ITS5 and ITS4 (1) aligned with deposited sequences from GenBank confirmed identity and revealed 99% to 100% DNA similarity with P. phaseolorum strains (AY577815, AF001020, HM012819, JQ936148). The isolate FM1 was used for pathogenicity testing. Five non-infected detached leaves and pods of 4-week-old lima bean were surface sterilized and inoculated by placing 10 μl of conidial suspension (106 conidia ml-1) on the surface of leaves and pods using either the wound/drop or non-wound/drop method and distilled water used as control (3). The inoculated leaves and pods were incubated at 25 °C and 98% RH, and the experiment was performed twice. Disease reactions and symptoms were evaluated after inoculation. After one week, typical symptoms of pod and stem blight appeared with formation of pycnidia on the surface of the tissues, but not on non-inoculated controls. P. phaseolorum var. sojae was consistently reisolated from symptoms. To our knowledge, this is the first report of P. phaseolorum var. sojae causing pod and stem blight of lima bean in Malaysia. References: (1) R. Ford et al. Aust. Plant Pathol. 33:559, 2004. (2) G. L. Hartman et al. Compendium of Soybean Diseases. 4th ed. American Phytopathological Society, St. Paul, MN, 1999. (3) P. P. Than et al. Plant Pathol. 57:562, 2008.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links