Displaying publications 1 - 20 of 141 in total

Abstract:
Sort:
  1. Rosli H, Mayfield DA, Batzer JC, Dixon PM, Zhang W, Gleason ML
    Plant Dis, 2017 Oct;101(10):1721-1728.
    PMID: 30676929 DOI: 10.1094/PDIS-02-17-0294-RE
    A warning system for the sooty blotch and flyspeck (SBFS) fungal disease complex of apple, developed originally for use in the southeastern United States, was modified to provide more reliable assessment of SBFS risk in Iowa. Modeling results based on previous research in Iowa and Wisconsin had suggested replacing leaf wetness duration with cumulative hours of relative humidity (RH) ≥97% as the weather input to the SBFS warning system. The purpose of the present study was to evaluate the performance of a RH-based SBFS warning system, and to assess the potential economic benefits for its use in Iowa. The warning system was evaluated in two separate sets of trials-trial 1 during 2010 and 2011, and trial 2 during 2013-2015-using action thresholds based on cumulative hours of RH ≥97% and ≥90%, respectively, in conjunction with two different fungicide regimes. The warning system was compared with a traditional calendar-based system that specified spraying at predetermined intervals of 10 to 14 days. In trial 1, use of the RH ≥97% threshold caused substantial differences between two RH sensors in recording number of hours exceeding the threshold. When both RH thresholds were compared for 2013-2015, on average, RH ≥90% resulted in a 53% reduction in variation of cumulative hours between two identical RH sensors placed adjacent to each other in an apple tree canopy. Although both the SBFS warning system and the calendar-based system resulted in equivalent control of SBFS, the warning system required fewer fungicide sprays than the calendar-based system, with an average of 3.8 sprays per season (min = 2; max = 5) vs. 6.4 sprays per season (min = 5; max = 8), respectively. The two fungicide regimes provided equivalent SBFS control when used in conjunction with the warning system. A partial budget analysis showed that using the SBFS warning system with a threshold of RH ≥90% was cost effective for orchard sizes of >1 ha. The revised warning system has potential to become a valuable decision support tool for Midwest apple growers because it reduces fungicide costs while protecting apples as effectively as a calendar-based spray schedule. The next step toward implementation of the SBFS warning system in the North Central U.S. should be multiyear field testing in commercial orchards throughout the region.
  2. Ahmadi P, Muharam FM, Ahmad K, Mansor S, Abu Seman I
    Plant Dis, 2017 Jun;101(6):1009-1016.
    PMID: 30682927 DOI: 10.1094/PDIS-12-16-1699-RE
    Ganoderma boninense is a causal agent of basal stem rot (BSR) and is responsible for a significant portion of oil palm (Elaeis guineensis) losses, which can reach US$500 million a year in Southeast Asia. At the early stage of this disease, infected palms are symptomless, which imposes difficulties in detecting the disease. In spite of the availability of tissue and DNA sampling techniques, there is a particular need for replacing costly field data collection methods for detecting Ganoderma in its early stage with a technique derived from spectroscopic and imagery data. Therefore, this study was carried out to apply the artificial neural network (ANN) analysis technique for discriminating and classifying fungal infections in oil palm trees at an early stage using raw, first, and second derivative spectroradiometer datasets. These were acquired from 1,016 spectral signatures of foliar samples in four disease levels (T1: healthy, T2: mildly-infected, T3: moderately infected, and T4: severely infected). Most of the satisfactory results occurred in the visible range, especially in the green wavelength. The healthy oil palms and those which were infected by Ganoderma at an early stage (T2) were classified satisfactorily with an accuracy of 83.3%, and 100.0% in 540 to 550 nm, respectively, by ANN using first derivative spectral data. The results further indicated that the sensitive frond number modeled by ANN provided the highest accuracy of 100.0% for frond number 9 compared with frond 17. This study showed evidence that employment of ANN can predict the early infection of BSR disease on oil palm with a high degree of accuracy.
  3. Azuan NH, Khairunniza-Bejo S, Abdullah AF, Kassim MSM, Ahmad D
    Plant Dis, 2019 Dec;103(12):3218-3225.
    PMID: 31596688 DOI: 10.1094/PDIS-10-18-1721-RE
    Basal stem rot (BSR), caused by the Ganoderma fungus, is an infectious disease that affects oil palm (Elaeis guineensis) plantations. BSR leads to a significant economic loss and reductions in yields of up to Malaysian Ringgit (RM) 1.5 billion (US$400 million) yearly. By 2020, the disease may affect ∼1.7 million tonnes of fresh fruit bunches. The plants appear symptomless in the early stages of infection, although most plants die after they are infected. Thus, early, accurate, and nondestructive disease detection is crucial to control the impact of the disease on yields. Terrestrial laser scanning (TLS) is an active remote-sensing, noncontact, cost-effective, precise, and user-friendly method. Through high-resolution scanning of a tree's dimension and morphology, TLS offers an accurate indicator for health and development. This study proposes an efficient image processing technique using point clouds obtained from TLS ground input data. A total of 40 samples (10 samples for each severity level) of oil palm trees were collected from 9-year-old trees using a ground-based laser scanner. Each tree was scanned four times at a distance of 1.5 m. The recorded laser scans were synched and merged to create a cluster of point clouds. An overhead two-dimensional image of the oil palm tree canopy was used to analyze three canopy architectures in terms of the number of pixels inside the crown (crown pixel), the degree of angle between fronds (frond angle), and the number of fronds (frond number). The results show that the crown pixel, frond angle, and frond number are significantly related and that the BSR severity levels are highly correlated (R2 = 0.76, P < 0.0001; R2 = 0.96, P < 0.0001; and R2 = 0.97, P < 0.0001, respectively). Analysis of variance followed post hoc tests by Student-Newman-Keuls (Newman-Keuls) and Dunnett for frond number presented the best results and showed that all levels were significantly different at a 5% significance level. Therefore, the earliest stage that a Ganoderma infection could be detected was mildly infected (T1). For frond angle, all post hoc tests showed consistent results, and all levels were significantly separated except for T0 and T1. By using the crown pixel parameter, healthy trees (T0) were separated from unhealthy trees (moderate infection [T2] and severe infection [T3]), although there was still some overlap with T1. Thus, Ganoderma infection could be detected as early as the T2 level by using the crown pixel and the frond angle parameters. It is hard to differentiate between T0 and T1, because during mild infection, the symptoms are highly similar. Meanwhile, T2 and T3 were placed in the same group, because they showed the same trend. This study demonstrates that the TLS is useful for detecting low-level infection as early as T1 (mild severity). TLS proved beneficial in managing oil palm plantation disease.
  4. Ismail SI, Batzer JC, Harrington TC, Gleason ML
    Plant Dis, 2016 Feb;100(2):352-359.
    PMID: 30694131 DOI: 10.1094/PDIS-02-15-0137-RE
    Sooty blotch and flyspeck (SBFS) is a fungal disease complex that can cause significant economic losses to apple growers by blemishing the fruit surface with dark-colored colonies. Little is known about the phenology of host infection for this diverse group of epiphytes. In 2009 and 2010, we investigated the timing of infection of apple fruit by SBFS species in six commercial apple orchards in Iowa. Five trees in each orchard received no fungicide sprays after fruit set. Within 3 weeks after fruit set, 60 apples per tree were covered with Japanese fruit bags to minimize inoculum deposition. Subsequently, a subsample of bagged apples was exposed for a single 2-week-long period and then rebagged for the remainder of the growing season. Experimental treatments included seven consecutive 2-week-long exposure periods; control treatments were apples that were either bagged or exposed for the entire season. After apples had been stored at 2°C for 6 weeks following harvest, all SBFS colonies on the apples were identified to species using a PCR-RFLP protocol. A total of 15 species were identified. For the seven most prevalent species, the number of infections per cm2 of fruit surface was greatest on apples that had been exposed early in the season. Two SBFS species, Peltaster fructicola and Colletogloeopsis-like FG2, differed significantly from each other in time required to attain 50% of the total number of colonies per apple, and analysis of variance indicated a significant interaction of SBFS taxon with exposure period. Our findings are the first evidence of species-specific patterns in timing of SBFS inoculum deposition and infection on apple fruit, and strengthen previous observations that most SBFS infections resulting in visible colonies at harvest develop from infections that occur early in the fruit development period. By defining taxon-specific phenological patterns of fruit infection, our findings, when combined with knowledge of region-specific patterns of taxon prevalence, provide a foundation for development of more efficient and cost-effective SBFS management tactics.
  5. Afolabi O, Milan B, Amoussa R, Koebnik R, Poulin L, Szurek B, et al.
    Plant Dis, 2014 Oct;98(10):1426.
    PMID: 30703943 DOI: 10.1094/PDIS-05-14-0504-PDN
    On May 9, 2013, symptoms reminiscent of bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola were observed on rice plants at the panicle emergence stage at Musenyi, Gihanga, and Rugombo fields in Burundi. Affected leaves showed water-soaked translucent lesions and yellow-brown to black streaks, sometimes with visible exudates on leaf surfaces. Symptomatic leaves were ground in sterile water and the suspensions obtained were subjected to a multiplex PCR assay diagnostic for X. oryzae pathovars (3). Three DNA fragments (331, 691, and 945 bp) corresponding to X. oryzae pv. oryzicola were observed after agarose gel electrophoresis. Single bacterial colonies were then isolated from surface-sterilized, infected leaves after grinding in sterile water and plating of 10-fold dilutions of the cell suspension on semi-selective PSA medium (4). After incubation at 28°C for 5 days, each of four independent cultures yielded single yellow, mucoid Xanthomonas-like colonies (named Bur_1, Bur_2, Bur_6, and Bur_7) that resembled the positive control strain MAI10 (1). These strains originated from Musenyi (Bur_1), Gihanga (Bur_2), and Rugumbo (Bur_6 and Bur_7). Multiplex PCR assays on the four putative X. oryzae pv. oryzicola strains yielded the three diagnostic DNA fragments mentioned above. All strains were further analyzed by sequence analysis of portions of the gyrB gene using the universal primers gyrB1-F and gyrB1-R for PCR amplification (5). The 762-bp DNA fragment was identical to gyrB sequences from the Asian X. oryzae pv. oryzicola strains BLS256 (Philippines), ICMP 12013 (China), LMG 797 and NCPPB 2921 (both Malaysia), and from the African strain MAI3 (Mali) (2). The partial nucleotide sequence of the gyrB gene of Bur_1 was submitted to GenBank (Accession No. KJ801400). Pathogenicity tests were performed on greenhouse-grown 4-week-old rice plants of the cvs. Nipponbare, Azucena, IRBB 1, IRBB 2, IRBB 3, IRBB 7, FKR 14, PNA64F4-56, TCS 10, Gigante, and Adny 11. Bacterial cultures were grown overnight in PSA medium and re-suspended in sterile water (1 × 108 CFU/ml). Plants were inoculated with bacterial suspensions either by spraying or by leaf infiltration (1). For spray inoculation, four plants per accession and strain were used while three leaves per plant and four plants per accession and strain were inoculated by tissue infiltration. After 15 days of incubation in a BSL-3 containment facility (27 ± 1°C with a 12-h photoperiod), the spray-inoculated plants showed water-soaked lesions with yellow exudates identical to those seen in the field. For syringe-infiltrated leaves, the same symptoms were observed at the infiltrated leaf area. Re-isolation of bacteria from symptomatic leaves yielded colonies with the typical Xanthomonas morphology that were confirmed by multiplex PCR to be X. oryzae pv. oryzicola, thus fulfilling Koch's postulates. Bur_1 has been deposited in the Collection Française de Bactéries Phytopathogènes as strain CFBP 8170 ( http://www.angers-nantes.inra.fr/cfbp/ ). To our knowledge, this is the first report of X. oryzae pv. oryzicola causing bacterial leaf streak on rice in Burundi. Further surveys will help to assess its importance in the country. References: (1) C. Gonzalez et al., Mol. Plant Microbe Interact. 20:534, 2007. (2) A. Hajri et al. Mol. Plant Pathol. 13:288, 2012. (3) J. M. Lang et al. Plant Dis. 94:311, 2010. (4) L. Poulin et al. Plant Dis. 98:1423, 2014. (5) J. M. Young et al. Syst. Appl. Microbiol. 31:366, 2008.
  6. Zhou JN, Liu SY, Chen YF, Liao LS
    Plant Dis, 2015 Mar;99(3):416.
    PMID: 30699721 DOI: 10.1094/PDIS-10-14-1025-PDN
    Clausena lansium, also known as wampee (Clausena wampi), is a plant species native to China, Vietnam, the Philippines, Malaysia, and Indonesia, where it is widely cultivated, and also grown in India, Sri Lanka, Queensland, Florida, and Hawaii, but less frequently (3). The fruit can be consumed fresh or made into juice, jam, or succade. In summer to fall 2014, a soft rot disease was found in a wampee planting region in Yunan County, Guangdong Province, China. On Sept. 18, we collected diseased samples from a wampee orchard with about 20% disease incidence. The infected fruit initially showed pinpoint spots on the peel, water-soaked lesions, and light to dark brown discoloration. Spots expanded in 2 days, and tissues collapsed after 5 days. Severely affected fruit showed cracking or nonodorous decay. Five diseased samples were collected, and causal agents were isolated from symptomatic tissues 1 cm under the peel after surface sterilization in 0.3% NaOCl for 10 min and rinsing in sterile water three times. Tissues were placed on a Luria Bertani (LB) plate for culture. Ten representative isolates were selected for further characterization. No colony was isolated from healthy tissues. Colonies were round, smooth, with irregular edges, and produced a yellow pigment in culture. Biolog identification (Version 4.20.05) showed that all strains were gram negative, negative for indole production, and utilized glucose, maltose, trehalose, sucrose, D-lactose, and pectin but not sorbitol or gelatin. The isolates were identified as Pantoea agglomerans (SIM 0.69). Multilocus sequence analysis (MLSA) was conducted for rapid classification of the strains. Sequences of atpD, gyrB, infB, and rpoB were amplified using corresponding primers (2). All sequences of the 10 isolates were identical in each gene. BLASTn was performed, and maximum likelihood trees based on the concatenated nucleotide sequences of the four genes were constructed using MEGA6. Bootstrap values after 1,000 replicates were expressed as percentages. Results showed that the tested strain named CL1 was most homologous to P. anthophila, with 98% identity for atpD (KM521543), 100% for gyrB (KM521544), infB (KM521545), and rpoB (KM521546). The 16S rRNA sequence (KM521542) amplified by primers 27f and 1492r shared 99% identity with that of P. anthophila M19_2C (JN644500). P. anthophila was previously reclassified from P. agglomerans (3); therefore, we suggest naming this wampee pathogen P. anthophila. Subsequently, 10 wampee fruits were injected with 20 μl of bacterial suspension (1 × 108 CFU/ml) of strains CL1 and CL2, respectively, and another 10 were injected with 20 μl of LB medium as controls, all kept at 28°C for 4 days. Symptoms similar to those of natural infections were observed on inoculated fruits but not on the negative controls. Bacteria were isolated from diseased tissues and further identified as P. anthophila by gyrB sequencing. P. anthophila was reported to naturally infect balsam and marigold (1,2). To our knowledge, this is the first report of P. anthophila naturally causing soft rot disease and cracking on C. lansium (wampee). References: (1) C. Brady et al. Syst. Appl. Microbiol. 31:447, 2008. (2) C. Brady et al. Int. J. Syst. Evol. Microbiol. 59:2339, 2009. (3) J. Morton. Fruits of Warm Climates. Echo Point Books & Media, Miami, FL, 1987.
  7. Nejat N, Vadamalai G, Sijam K, Dickinson M
    Plant Dis, 2011 Oct;95(10):1312.
    PMID: 30731679 DOI: 10.1094/PDIS-03-11-0251
    Madagascar periwinkle, Catharanthus roseus (L.) G. Don, is a member of the Apocynaceae plant family that is native to Madagascar and produces dimeric terpenoid indole alkaloids that are used in the treatment of hypertension and cancer. Periwinkle as an indicator plant is highly susceptible to phytoplasmas and spiroplasma infection from different crops, and has been found to be naturally infected with spiroplasmas in Arizona, California, and the Mediterranean countries. In this study, surveys of suspected diseased periwinkles were conducted in various regions of Selangor State, Malaysia. Periwinkles showing rapid decline in the number and size of the flowers, premature abscission of buds and flowers, reduction in leaf size, chlorosis of the leaf tips and margins, general chlorosis, and stunting and dying plants were collected. These symptoms were widespread on periwinkle in this state. Diagnosis of the disease was based on symptomatology, grafting, serology (ELISA), PCR techniques, and cultivation. Tests for transmission by grafting were conducted using symptomatic periwinkle plants. Symptoms were induced on all eight graft-inoculated healthy periwinkles approximately 2 weeks after side grafting. Preliminary examination was performed by ELISA with Spiroplasma citri Saglio polyclonal antibody that was prepared against an Iranian S. citri isolate (H. Rahimian, unpublished data). Leaf extracts of all 24 symptomatic periwinkles gave positive ELISA reactions at OD405 readings ranging from 0.310 to 0.654 to the antibody against S. citri by the indirect ELISA method. Six healthy periwinkle leaves gave OD405 readings around 0.128. Total nucleic acids were extracted from 10 symptomatic and 5 asymptomatic plants (4). PCR using the ScR16F1/ScR16R1 primer pair designed to detect S. citri in carrot and P1/P7 and secA for1/rev3 primer pairs designed for identification of phytoplasmas were used to detect the causal agent (1-3). Amplification failed when the P1/P7 universal phytoplasma primer pair was used for diseased samples. However, the PCR assays resulted in products of 1,833 and 800 bp with ScR16F1/ScR16R1 and secA for1/rev3, respectively. Five of each ScR16F1/ScR16R1 and SecAfor1/SecArev3 products were cloned with the Topo TA cloning kit (Invitrogen, Carlsbad, CA), sequenced, and deposited as GenBank Accession Nos. HM015669 and FJ011099, respectively. Sequences for both genes indicated that S. citri was associated with the disease on periwinkle. ScR16F1/ScR16R1 products cloned from symptomatic periwinkles had 98% sequence identity with S. citri (GenBank Accession No. AM285316), while nucleotide sequences of SecAfor1/SecArev3 products had 88% sequence identity with S. citri GII3-3X (GenBank Accession No. AM285304). S. citri was cultivated from 10 S. citri-infected periwinkles using filtration and SP-4 media. Twenty culture tubes started to change culture medium color from red to yellow 1 month after cultivation. Helical and motile S. citri was observed in the dark-field microscope. To our knowledge, this is the first report on the presence and occurrence of S. citri in Southeast Asia and its association with lethal yellows on periwinkle in Malaysia. References: (1) J. Hodgetts et al. Int. J. Syst. Evol. Microbiol. 58:1826, 2008. (2) I.-M. Lee et al. Phytopathology 85:728, 1995. (3) I.-M. Lee et al. Plant Dis. 90:989, 2006. (4) Y.-P. Zhang et al. J. Virol. Methods. 71:45, 1998.
  8. Nazerian E, Sijam K, Zainal Abidin MA, Vadamalai G
    Plant Dis, 2011 Nov;95(11):1474.
    PMID: 30731752 DOI: 10.1094/PDIS-10-10-0754
    Cucumber (Cucumis sativus L.) is one of the most important vegetable fruits in Malaysia. Cucumber is principally grown in the states of Johor, Kelantan, and Perak. The broad host range Enterobacteriaceae pathogen, Pectobacterium carotovorum, can cause soft rot on stems or cucumber fruit. In Malaysia, cucumber is produced in a warm, humid climate, thus the plant is susceptible to attack by P. carotovorum at any time during production. In 2010, cucumber samples with wilted and chlorotic leaves, water-soaked lesions, and collapsed fruits were found in multiple fields. Small pieces of infected stems and fruit were immersed in 5 ml of saline solution (0.85% NaCl) for 20 min and then 50 μl of this suspension was spread onto nutrient agar (NA) and incubated at 27°C for 24 h. White-to-pale gray colonies with irregular margins were selected for analysis. For pathogenicity tests, cucumber fruits were surface sterilized by ethyl alcohol 70%, washed with sterilized distilled water, cut into small pieces, and inoculated with 20 μl of 108 CFU/ml suspensions of five representative strains. Cucumber plants were grown for 3 weeks in sterilized soil and their stems were inoculated with 20 μl of 108 CFU/ml of bacterial suspension. Inoculated samples and control (noninoculated) plants were placed in a growth chamber with 80 to 90% relative humidity at 27°C. Symptoms occurred on fruit slices and stems after 1 to 3 days and appeared the same as naturally infected samples, but the control samples remained healthy. Koch's postulates were fulfilled with the reisolation of cultures with the same characteristics as described earlier. Hypersensitivity reaction (HR) assays were done by infiltrating 108 CFU/ml of bacterial suspension into tobacco leaf epidermis and HR developed. All strains were subjected to biochemical and morphological assays, as well as molecular assessment. The strains were gram negative, facultative anaerobes, rod shaped, able to macerate potato slices and growth at 37°C; catalase positive; oxidase and phosphatase negative; able to degrade pectate; sensitive to erythromycin; negative for utilization of α-methyl glycoside, indole production, and reduction of sugars from sucrose; acid production from arabitol, sorbitol, and utilization of citrate were negative, but positive for raffinose and melibiose utilization. PCR amplification of the pel gene by Y1 and Y2 primers produced a 434-bp fragment on agarose gel 1% (1). Amplification of intergenic transcribed spacer region by G1 and L1 primers gave two main bands at approximately 535 and 580 bp on agarose gel 1.5%. The ITS-PCR products were digested with RsaI restriction enzyme (3). On the basis of biochemical and morphological characteristics, PCR-based pel gene and characterization of the ITS region, and digestion of the ITS-PCR products with RsaI restriction enzyme, all isolates were identified as P. carotovorum subsp. carotovorum. To our knowledge, this is the first report of soft rot caused by P. carotovorum subsp. carotovorum on cucumber from Malaysia. References: (1) A. Darraas et al. Appl. Environ. Microbiol. 60:1437, 1994. (2) N. W Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society Press, St. Paul, 2001. (3) I. K. Toth et al. Appl. Environ. Microbiol. 67:4070, 2001.
  9. Rooney-Latham S, Blomquist CL, Scheck HJ
    Plant Dis, 2011 Nov;95(11):1478.
    PMID: 30731749 DOI: 10.1094/PDIS-03-11-0261
    Passiflora edulis Sims f. edulis, known as purple passion fruit, is a woody, perennial vine that is grown for its attractive two-part flower and its purple, edible fruit (4). In November 2009, passion fruit vines were collected during a regulatory nursery inspection in Santa Barbara County and submitted to the California Department of Food and Agriculture Plant Pest Diagnostics Laboratory. Nearly 100% of the plants inspected, all of which were approximately 1.25 m tall, appeared stunted, defoliated, and severely wilted. Dark brown vascular discoloration was present in the roots and lower stems of the plants. A pinkish violet Fusarium oxysporum colony containing chlamydospores, multiseptate macroconidia, and microconidia formed on monophialidic conidiophores was consistently isolated from roots and stems onto half-strength acidified potato dextrose agar (aPDA). All further experiments were done with an isolate obtained from a single conidium. A portion of the translation elongation factor gene (TEF-1α) was amplified and sequenced with primers ef1 and ef2 from our isolate (GenBank No. JF332039) (3). BLAST analysis of the 615-bp amplicon with the FUSARIUM-ID database showed 99% similarity with a F. oxysporum passion fruit isolate from Australia (NRRL 38273) (3). To confirm pathogenicity, washed roots of four-leaf stage seedlings approximately 10 cm tall were submerged in a conidial spore suspension (106 spores/ml) for 15 min. The conidial suspension was prepared by flooding 10-day-old cultures grown on aPDA medium with sterile distilled water. Seven seedlings were inoculated and planted in 10-cm2 pots and kept in a 25°C growth chamber with a 12-h photoperiod. Seven seedlings were mock inoculated with sterile water. After 3 weeks, four of the seven inoculated plants had leaves with yellow veins and discolored roots and had partially defoliated. Two of the four symptomatic plants also had brown stem cankers. F. oxysporum grew from the isolated roots and stems of all the inoculated plants. F. oxysporum did not grow from root and stem pieces from the water-dipped plants and the plants remained asymptomatic. Inoculations were repeated on plants approximately 15 cm tall with F. oxysporum growing from roots and stem pieces of all inoculated plants. Symptoms of yellow veins and root necrosis were not observed until 4 weeks after inoculation. Fusarium wilt caused by F. oxysporum f. sp. passiflorae is a significant disease of P. edulis f. edulis in Australia. The disease has also been reported in South Africa, Malaysia, Brazil, Panama, and Venezuela; but it is unclear as to whether the symptoms were caused by Fusarium wilt or Haematonectria canker (1). Banana poka (P. mollissima), P. ligularis, and P. foetida are also susceptible hosts (2). To our knowledge, this is the first report of Fusarium wilt caused by F. oxysporum f. sp. passiflorae on passion fruit in North America. Passion fruit is not commercially produced for consumption in California so the economic importance of this disease appears to be limited to nursery production and ornamental landscapes. The grower of the California nursery stated that the infected passion fruit plants had been propagated on site from seed. The source of inoculum at this nursery remains unknown. References: (1) I. H. Fischer and J. A. M. Rezende. Pest Tech. 2:1, 2008 (2) D. E. Garder. Plant. Dis. 73:476, 1989. (3) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (4) F. W. Martin et al. Econ. Bot. 24:333, 1970.
  10. Liao X, Fu Y, Zhang S, Duan YP
    Plant Dis, 2012 Feb;96(2):288.
    PMID: 30731824 DOI: 10.1094/PDIS-08-11-0639
    Indian spinach (Basella rubra L.) is a red stem species of Basella that is cultivated worldwide as an ornamental and the aerial parts are also consumed as a vegetable. In May of 2011, symptoms of damping-off were observed on approximately 10% of the plants at the stem base around the soil line of seedlings in a greenhouse in Homestead, FL. Lesions were initially water soaked, grayish to dark brown, irregular in shape, and sunken in appearance on large plants, causing the infected seedlings to collapse and eventually die. Symptomatic stem tissue was surface sterilized with 0.6% sodium hypochlorite, rinsed in sterile distilled water, air dried, and plated on potato dextrose agar (PDA). Plates were incubated at 25°C in darkness for 3 to 5 days. A fungus was isolated in all six isolations from symptomatic tissues on PDA. Fungal colonies on PDA were light gray to brown with abundant growth of mycelia, and the hyphae tended to branch at right angles when examined under a microscope. A septum was always present in the branch of hyphae near the originating point and a slight constriction at the branch was observed. Neither conidia nor conidiophores were found from the cultures on PDA. The characteristics of hyphae, especially the right angle branching of mycelia, indicate close similarity to those of Rhizoctonia solani (2,3). The internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced (GenBank Accession No. JN545836). Subsequent database searches by the BLASTN program indicated that the resulting sequence had a 100% identity over 472 bp with the corresponding gene sequence of R. solani anastomosis group (AG) 4 (GenBank Accession No. JF701752.1), a fungal pathogen reported to cause damping-off on many crops. Pathogenicity was confirmed through inoculation of healthy India spinach plants with the hyphae of isolates. Four 4-week-old plants were inoculated with the isolates by placing a 5-mm PDA plug of mycelia at the stem base and covering with a thin layer of the soil. Another four plants treated with sterile PDA served as a control. After inoculation, the plants were covered with plastic bags for 24 h and maintained in a greenhouse with ambient conditions. Four days after inoculation, water-soaked, brown lesions, identical to the symptoms described above, were observed on the stem base of all inoculated plants, whereas no symptoms developed on the control plants. The fungus was isolated from affected stem samples, and the identity was confirmed by microscopic appearance of the hyphae and sequencing the ITS1/ITS4 intergenic spacer region, fulfilling Koch's postulates. This pathogenicity test was conducted twice. R. solani has been reported to cause damping-off of B. rubra in Ghana (1) and Malaysia (4). To our knowledge, this is the first report of damping-off caused by R. solani AG-4 on Indian spinach in Florida and the United States. With the increased interest in producing Asian vegetables for food and ornamental purposes, the occurrence of damping-off on Indian spinach needs to be taken into account when designing programs for disease management in Florida. References: (1) H. A. Dade. XXIX. Bull. Misc. Inform. 6:205, 1940. (2) J. R. Parmeter et al. Phytopathology 57:218, 1967. (3) B. Sneh et al. Identification of Rhizoctonia species. The American Phytopathological Society, St Paul, MN, 1991. (4) T. H. Williams and P. S. W. Liu. Phytopathol. Pap. 19:1, 1976.
  11. Summerell BA, Salleh B, Leslie JF
    Plant Dis, 2003 Feb;87(2):117-128.
    PMID: 30812915 DOI: 10.1094/PDIS.2003.87.2.117
  12. Mahmodi F, Kadir JB, Wong MY, Nasehi A, Puteh A, Soleimani N
    Plant Dis, 2013 Jun;97(6):841.
    PMID: 30722625 DOI: 10.1094/PDIS-10-12-0944-PDN
    Soybean (Glycine max L.) is one of the most economically important crops in the world, and anthracnose is known to infect soybean in most countries. Colletotrichum truncatum is the common pathogen causing anthracnose of soybean. However, at least five species of Colletotrichum have been reported on soybean worldwide (2). In July 2010, anthracnose symptoms were observed on soybean in the experimental fields of the agriculture station in Ladang Dua, University Putra Malaysia located in Selangor state of Malaysia. Symptoms were initially observed on a few plants randomly within one field, but after 4 weeks, the disease was found in two additional fields scattered across an area of 1 km2. Pinkish-brown lesions were observed on the pods, and the formation of dark lesions on the leaves and stems was sometimes followed by stem girdling, dieback, and distorted growth. At later stages, numerous epidermal acervuli developed in the lesions, and mucilaginous conidial masses appeared during periods of high relative humidity. Conidia produced in acervuli were straight, cylindric, hyaline, and aseptate, with both ends rounded. Conidia measured (mean ± SD) 14.2 ± 0.6 × 3.6 ± 0.7 μm, and the L/W ratio was 3.95 μm. Six isolates of the fungus were obtained and identified as C. gloeosporioides on the basis of morphological characterization (3). The isolates were deposited in the University Putra of Malaysia Culture Collection (UPMCC). PDA cultures were white at first and subsequently became grayish to pink to reddish-brown. Amplification and sequence analysis of coding and none-coding regions of the ITS-rDNA (GenBank JX669450), actin (JX827430), β-tubulin (JX827454), histone (JX827448), chitin synthase (JX827436), and glyceraldehyde-3-phosphate dehydrogenase (JX827442) obtained from the representative isolate, CGM50, aligned with deposited sequences from GenBank and revealed 99 to 100% sequence identity with C. gloeosporioides strains (JX258757, JX009790, GQ849434, HM575301, JQ005413, and JX00948 from GenBank). One representative isolate, CGM50, was used for pathogenicity testing. Four non-infected detached leaves and pods of 24-day-old G. max var. Palmetto were surface-sterilized and inoculated by placing 10 μl of a conidial suspension (106 conidia ml-1) using either the wound/drop or non-wound/drop method (4), with 10 μl distilled water as a negative control. Leaves and pods were incubated at 25°C, 98% RH. The experiment was repeated twice. Five days after inoculation, the development of typical field symptoms, including acervuli formation, occurred on the leaves and pods of inoculated plants, but not on the negative controls. A fungus with the same colony and conidial morphology as CGM50 was recovered from the lesions on the inoculated leaves and pods. Anthracnose caused by C. gloeosporioides on soybean plants has been reported previously in different countries, but not in Malaysia (3). Geographically, the climate of Malaysia is highly conducive to maintain and cause outbreaks of anthracnose all year round; thus, the development of management recommendations will be inevitable for anthracnose control. To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on soybean in Malaysia. References: (1) U. Damm et al. Fungal Diversity 39:45, 2009. (2) S. L. Chen et al. J. Phytopathol. 154:654, 2006. (3) B. C. Sutton. The Genus Glomerella and its Anamorph Colletotrichum. CAB International, Wallingford, UK, 1992. (4) P. P. Than et al. Plant Pathol. 57:562, 2008. ERRATUM: A correction was made to this Disease Note on May 19, 2014. The author N. Soleimani was added.
  13. Intan Sakinah MA, Suzianti IV, Latiffah Z
    Plant Dis, 2013 Jul;97(7):991.
    PMID: 30722542 DOI: 10.1094/PDIS-10-12-0985-PDN
    Banana is the second largest cultivated fruit crop in Malaysia, and is cultivated for both the domestic market and also for export. Anthranose is a well-known postharvest disease of banana and with high potential for damaging market value, as infection commonly occurs during storage. Anthracnose symptoms were observed on several varieties of banana such as mas, berangan, awak, nangka, and rastali in the states of Perak and Penang between August and October 2011. Approximately 80% of the fruits became infected with initial symptoms characterized as brown to black spots that later became sunken lesions with orange or salmon-colored conidial masses. Infected tissues (5 × 5 mm) were surface sterilized by dipping in 1% sodium hypochlorite (NaOCl) for 3 to 5 min, rinsed with sterile distilled water, and plated onto potato dextrose agar (PDA). Direct isolation was done by transferring the conidia from conidial masses using an inoculation loop and plating onto PDA. For both methods, the PDA plates were incubated at 27 ± 1°C with cycles of 12 h light and 12 h darkness. Visible growth of mycelium was observed after 4 to 5 days of incubation. Twenty isolates with conidial masses were recovered after 7 days of incubation. The isolates produced grayish white to grayish green and grey to moss dark green colony on PDA, pale orange conidial masses, and fusiform to cylindrical and hyaline conidia with an average size of 15 to 19 × 5 to 6 μm. Appresoria were ovate to obovate, dark brown, and 9 to 15 × 7 to 12 μm and setae were present, slightly swollen at the base, with a tapered apex, and brown. The cultural and morphological characteristics of the isolates were similar to those described for C. gleosporioides (1,2,3). All the C. gloeosporioides isolates were deposited in culture collection at Plant Pathology Lab, University Sains Malaysia. For confirmation of the identity of the isolates, ITS regions were sequenced using ITS4 and ITS5 primers. The isolates were deposited in GenBank with accessions JX163228, JX163231, JX163201, JX163230, JX163215, JX163223, JX163219, JX163202, JX163225, JX163222, JX163206, JX163218, JX163208, JX163209, JX163210, JX431560, JX163212, JX163213, JX431540, and JX431562. The resulting sequences showed 99% to 100% similarity with multiple C. gloeosporioides isolates in GenBank. Pathogenicity tests were conducted using mas, berangan, awak, nangka, and rastali bananas. Fruit surfaces were sterilized with 70% ethanol and wounded using a sterile scalpel. Two inoculation techniques were performed separately: mycelia plug and conidial suspension. Mycelial disc (5 mm) and a drop of 20 μl spore suspension (106 conidia/ml) were prepared from 7-day-old culture and placed on the fruit surface. The inoculated fruits were incubated at 27 ± 1°C for 10 days at 96.1% humidity. After 3 to 4 days of inoculation, brown to black spotted lesions were observed and coalesced to become black sunken lesions. Similar anthracnose symptoms were observed on all banana varieties tested. C. gloeosporioides was reisolated from the anthracnose lesions of all the inoculated fruit in which the cultural and morphological characteristics were the same as the original isolates. To our knowledge, this is the first report of C. gloeosporioides causing anthracnose of Musa spp. in Malaysia. References: (1) P. F. Cannon et al. Mycotaxon 104:189, 2008. (2) J. E. M. Mordue. Glomerella cingulata. CMI Description of Pathogenic Fungi and Bacteria, No. 315. CAB International,1971. (3) H. Prihastuti et al. Fungal Diversity 39:89, 2009.
  14. Sakinah MAI, Latiffah Z
    Plant Dis, 2013 Aug;97(8):1110.
    PMID: 30722495 DOI: 10.1094/PDIS-09-12-0831-PDN
    Rambutan (Nephelium lappaceum L.) is among the tropical fruit grown in Malaysia and the demand for export rose in 2011. A fruit rot was observed between August and December 2011 from several areas in the states of Pulau Pinang and Perak, Malaysia. The symptoms initially appeared as light brown, water-soaked lesions that developed first in the pericarp and pulp, later enlarging and becoming dark brown. Greyish brown mycelia were observed on infected areas that turned yellowish at later stages of infection. Gliocephalotrichum bacillisporum was isolated from infected fruit by surface sterilization techniques. Conidia were mass-transferred onto potato dexstrose agar (PDA) plates and incubated at 27 ± 1°C. Tissue pieces (5 × 5 mm) excised from the margins between infected and healthy areas were then surface sterilized in 1% sodium hypochlorite for 3 to 5 min before being rinsed with distilled water, plated on PDA, and incubated at 27 ± 1°C for 7 days. Ten isolates of G. bacillisporum were obtained. Colonies on PDA were initially white before turning yellow with a feathery appearance. Microscopic characteristics on carnation leaf agar (CLA) consisted of hyaline conidia that were slightly ellipsoid to bacilliform with rounded apex ranging from 6.0 to 8.5 μm long and 2.0 to 2.5 μm wide. Conidiophores (70 to 130 μm long) were mostly single arising from large hypha approximately 13 to 16 μm. The conidiogenous structures were mostly quadriverticillate with dense, short, penicillate branches. The phialides were cylindrical and finger-like. Chlamydospores were present singly, in groups of 2 to 4, or in occasionally branched short chains and were brown in color with thick walls ranging from 11 to 13 μm. The cultural and morphological characteristics of G. bacillisporum isolates in the present study were very similar to previously published descriptions (1) except the conidiophores formed without sterile stipe extensions. All the G. bacillisporum isolates were deposited in culture collection at the Plant Pathology Lab, University Sains Malaysia, Penang. Molecular identification was accomplished from the ITS regions using ITS1 and ITS2 primers, and the β-tubulin gene using Bt2a and Bt2b primers (2). BLAST results from the ITS regions showed a 98 to 99% similarity with sequences of G. bacillisporum isolates reported in GenBank. Accession numbers of G. bacillisporum ITS regions: JX484850, JX484852, JX484853, JX484856, JX484858, JX484860, JX484862, JX484866, JX484867, and JX484868. The identity of G. bacillisporum isolates infecting rambutan was further confirmed by β-tubulin sequences (KC683909, KC683911, KC683912, KC683916, KC683919, KC683920, KC683923, KC683926, and KC683927), which showed 92 to 95% similarity with sequences of G. bacillisporum. Pathogenicity tests were also performed using mycelial plug (5 mm) and sprayed conidial suspensions (20 μl suspension of 106 conidia/ml) prepared from 7-day-old cultures. Inoculated fruits were incubated at 27 ± 1°C and after 10 days, similar rotting symptoms appeared on the fruit surface. The pathogen was reisolated from fruit rot lesions, thus fulfilling Koch's postulates, and tests were repeated twice. To our knowledge, this is the first report of G. bacillisporum causing fruit rot of rambutan (N. lappaceum L.) in Malaysia. References: (1) C. Decock et al. Mycologia 98:488, 2006. (2) N. L. Glass and G. C. Donaldson. Appl. Environ Microbiol. 61:1323, 1995.
  15. Golkhandan E, Kamaruzaman S, Sariah M, Abidin MZZ, Nasehi A, Nazerian E
    Plant Dis, 2013 Aug;97(8):1109.
    PMID: 30722490 DOI: 10.1094/PDIS-01-13-0042-PDN
    Symptoms of water-soaked lesions and soft rot were first observed in June 2011 on bell pepper fruits (Capsicum annuum cv. Annuum) in the two main regions of pepper production in Malaysia (Cameron Highlands and Johor State). Economic losses exceeded 40% in severely infected fields and greenhouses with the estimated disease incidence of 70%. In pepper fruits damaged by insects, sunscald, or other factors, symptoms initially appeared in the peduncle and calyx tissues and entire fruits were turned into watery masses within 2 to 6 days. Fruits infected in the field tended to collapse and hang on the plant. When the contents leaked out, the outer skin of the fruit dried and remained attached to the plant. Field-grown transplants and infected soil were identified as probable sources of inocula. A total of 50 attached fruits were collected from 10 pepper fields and greenhouses located in the two growing regions. Tissue from the margins of water-soaked lesions was surface-sterilized in 1% NaOCl for 2 min, rinsed in sterile water, dried, and plated onto nutrient agar (NA) and eosin methylene blue agar (EMB) media (3). A similar bacterium was isolated from all samples. After 2 days, white to creamy bacterial colonies on NA and emerald green colonies on EMB developed. Five independent strains were subjected to further biochemical, molecular, and pathogenicity tests. Bacterial strains were gram-negative, motile rods, grew at 37°C, were facultatively anaerobic, oxidase-negative, phosphatase-negative, and catalase-positive. They degraded pectate, were sensitive to erythromycin, did not utilize Keto-methyl glucoside, were indole production-negative, and reduced sugars from sucrose (3). Acid production was negative from sorbitol and arabitol, but positive from melibiose and citrate. PCR amplification of the pel gene by Y1 and Y2 primers produced a 434-bp fragment (2). Amplification of the intergenic transcribed spacer (ITS) region by G1 and L1 primers (4) gave two amplicons ca. 550 and 580 bp long. The expected amplicon was not produced with any of the strains using primers Br1f/L1r and Eca1f/Eca2r (1), whereas a 550-bp PCR product, typical of Pectobacterium carotovorum subsp. carotovorum, was obtained with primers EXPCCF and EXPCCR (1). Based on biochemical and molecular characteristics, and analysis of PCR-RFLP of 16S-ITS-23R rRNA genes using Rsa I enzyme (4), all five bacterial strains were identified as P. carotovorum subsp. carotovorum. BLAST analysis of the 16S rRNA sequence (GenBank Accession No KC189032) showed 100% identity to the 16S rRNA of P. carotovorum subsp. carotovorum strain PPC192. For pathogenicity tests, four mature pepper fruits of cv. Annuum were inoculated by injecting 10 μl of a bacterial suspension (108 CFU/ml) into pericarps and the fruits were incubated in a moist chamber at 80 to 90% relative humidity and 30°C. After 72 h, water-soaked lesions similar to those observed in the fields and greenhouses were observed and bacteria with the same characteristics were consistently reisolated, thereby fulfilling Koch's postulates. Symptoms were not observed on water-inoculated controls. References: (1) S. Baghaee-Ravari et al. Eur. J. Plant Pathol. 129:413, 2001. (2) A. Darraas et al. Appl. Environ. Microbiol. 60:1437, 1994. (3) N. W Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society Press, St Paul, MN, 2001. (4) I. K. Toth et al. Appl. Environ. Microbiol. 67:4070, 2001.
  16. Mahmodi F, Kadir JB, Puteh A, Wong MY, Nasehi A
    Plant Dis, 2013 Feb;97(2):287.
    PMID: 30722331 DOI: 10.1094/PDIS-08-12-0756-PDN
    In July 2011, a severe outbreak of pod and stem blight was observed on lima bean (Phaseolus lunatus L.) plants grown in the Cameron Highlands, located in Pahang State, Malaysia. Disease incidence varied from 33 to 75% in different fields. Pods and stems exhibited withered, light brown to reddish brown necrotic areas. Sub-circular and brown lesions were produced on the leaves. These lesions varied in size, often reaching a diameter of 1 to 2 cm. After tissue death, numerous pycnidia were observed on the surface of the pod or stem. The pycnidia diameter varied from 155 to 495 μm, averaging 265.45 μm, and on the surface of the pod or stem, pycnidia were often arranged concentrically or linearly, respectively. Pycnidiospores were hyaline, 1-celled, usually straight, and rarely, slightly curved. The α-spores varied from 5.5 to 9.0 × 2.5 to 4.0 μm; averaging 7.3 × 3.5 μm. The β-spores found either alone or with pycnidiospores in pycnidia were slender, hyaline, nonseptate, and straight or curved. Size varied from 15.8 to 38.0 × 1.3 to 2.1 μm; averaging 25.86 × 1.8 μm. The colony characteristics were recorded from pure cultures grown on potato dextrose agar plates, and incubated in darkness for 7 days at 25 °C, then exposed to 16/8 h light and dark periods at 25°C for a further 14 to 21 days. Morphological characteristics of the colonies and spores on PDA matched those described for P. phaseolorum var. sojae (2). Colonies were white, compact, with wavy mycelium and stromata with pycnidia that contained abundant β-spores. Sequence analysis of the ribosomal DNA internal transcribed spacer obtained from the Malaysian isolate FM1 (GenBank Accession No. JQ514150) using primers ITS5 and ITS4 (1) aligned with deposited sequences from GenBank confirmed identity and revealed 99% to 100% DNA similarity with P. phaseolorum strains (AY577815, AF001020, HM012819, JQ936148). The isolate FM1 was used for pathogenicity testing. Five non-infected detached leaves and pods of 4-week-old lima bean were surface sterilized and inoculated by placing 10 μl of conidial suspension (106 conidia ml-1) on the surface of leaves and pods using either the wound/drop or non-wound/drop method and distilled water used as control (3). The inoculated leaves and pods were incubated at 25 °C and 98% RH, and the experiment was performed twice. Disease reactions and symptoms were evaluated after inoculation. After one week, typical symptoms of pod and stem blight appeared with formation of pycnidia on the surface of the tissues, but not on non-inoculated controls. P. phaseolorum var. sojae was consistently reisolated from symptoms. To our knowledge, this is the first report of P. phaseolorum var. sojae causing pod and stem blight of lima bean in Malaysia. References: (1) R. Ford et al. Aust. Plant Pathol. 33:559, 2004. (2) G. L. Hartman et al. Compendium of Soybean Diseases. 4th ed. American Phytopathological Society, St. Paul, MN, 1999. (3) P. P. Than et al. Plant Pathol. 57:562, 2008.
  17. Keith LM, Matsumoto TK
    Plant Dis, 2013 Jan;97(1):146.
    PMID: 30722309 DOI: 10.1094/PDIS-07-12-0702-PDN
    Mangosteen (Garcinia mangostana L.) is a tropical evergreen tree that produces one of the most prized tropical fruits, commonly known as the "Queen of the Fruits.″ Mangosteen has the potential to occupy a rapidly expanding niche market in Hawaii. In October 2009, a disease was observed that produced brown leaf spots and blotches surrounded by bright yellow halos at a mangosteen orchard located in Hakalau, Hawaii (19° 53' 49″ N, 155° 7' 35″ W). Recently transplanted 10+ year old trees were 95 to 100% infected. Pieces of infected leaves and stems were surface-sterilized, plated on potato dextrose agar (PDA), and incubated at 24°C ± 1°C for 21 days. The fungus growing on PDA was pale buff with sparse aerial mycelium and acervuli containing black, slimy spore masses. Single spore isolates were used for the morphological characteristics and molecular analysis. Conidia were 5-celled. Apical and basal cells were hyaline; the three median cells were umber to olivaceous. Conidia (n = 50) were 24.3 ± 0.2 × 7.5 ± 0.1 μm, with apical appendages, typically three, averaging 24.3 ± 0.4 μm long, and a basal appendage averaging 6.7 ± 0.2 μm long. DNA sequences were obtained from the β-tubulin gene and the internal transcribed spacer (ITS1 and ITS2) and 5.8S regions of the rDNA to confirm the identification. The morphological descriptions and measurements were similar to P. virgatula (Kleb.) Steyaert (1). Although sequence data of the ITS region (GenBank Accession No. JN542546) supports the identity of the fungus as P. virgatula, the taxonomy of this genus remains confused since there are only a few type cultures, so it is impossible to use sequences in GenBank to reliably clarify species names (2). To confirm pathogenicity, six leaves of two 3-year-old seedlings were inoculated. Seven-day-old cultures grown on 10% V8 agar at 24°C under continuous fluorescent lighting were used for inoculations. The inoculum consisted of spore suspensions in sterile distilled water adjusted to 6 × 105 conidia/ml. Using a fine haired paint brush, the inoculum was brushed onto the youngest leaves, while sterile distilled water was used as the control. The plants were incubated in a clear plastic bag placed on the laboratory bench at 24°C for 48 hours, then placed on a greenhouse bench and observed weekly for symptoms. After 14 days, leaf spots ranging in size from pinpoint to 5.4 mm in diameter with a distinctive yellow halo were present. Within 35 days, the leaf spots enlarged to leaf blotches ranging in size from 11.5 × 13.3 mm up to 28.3 × 34.6 mm with brown centers and a distinctive yellow halo identical to the field symptoms. A Pestalotiopsis sp. identical to that used to inoculate the seedlings was recovered from the leaf spots and blotches, confirming Koch's postulates. The experiment was repeated twice. Pestalotiopsis leaf blight has been reported in other countries growing mangosteen, including Thailand, Malaysia, and North Queensland, Australia (3). However, to our knowledge, this is the first report of a Pestalotiopsis sp. causing a disease on mangosteen in Hawaii. Although this disease is considered a minor problem in the literature (3), effective management practices should be established to avoid potential production losses. References: (1) E. F. Guba. Monograph of Pestalotia and Monochaetia. Harvard University Press, Cambridge, MA. 1961. (2) S. S. N. Maharachchikumbura et al. Fungal Div. 50:167, 2011. (3) R. C. Ploetz. Diseases of Tropical Fruit Crops. CABI Publishing. Wallingford, Oxfordshire, UK, 2003.
  18. Nasehi A, Kadir JB, Esfahani MN, Mahmodi F, Ghadirian H, Ashtiani FA, et al.
    Plant Dis, 2013 May;97(5):689.
    PMID: 30722190 DOI: 10.1094/PDIS-10-12-0902-PDN
    In June 2011, lettuce (Lactuca sativa) plants cultivated in major lettuce growing areas in Malaysia, including the Pahang and Johor states, had extensive leaf spots. In severe cases, disease incidence was recorded more than 80%. Symptoms on 50 observed plants initially were as water soaked spots (1 to 2 mm in diameter) on leaves, and then became circular spots spreading over much of the leaves. In this research, main lettuce growing areas infected by the pathogen in the mentioned states were investigated and the pathogen was isolated onto potato dextrose agar (PDA). Colonies observed were greyish green to light brown. Single conidia were formed at the terminal end of conidiophores that were 28.8 to 40.8 μm long and 11.0 to 19.2 μm wide, and 2 to 7 transverse and 1 to 4 longitudinal septa. To produce conidia, the fungus was grown on potato carrot agar (PCA) and V8 juice agar media under 8-h/16-h light/dark photoperiod. Fourteen isolates were identified Stemphylium solani based on morphological criteria described by Kim et al. (1). To confirm morphological characterization, DNA of the fungus was extracted from mycelium and PCR was done using universal primers ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'), which amplified the internal transcribed spacer (ITS) region of rDNA (2). The sequencing result was subjected to BLAST analysis which was 99% identical to the other published sequences in the GenBank database (GenBank Accession Nos. AF203451 and HQ840713). The nucleotide sequence was deposited in GenBank under Accession No. JQ736022. Pathogenicity testing of representative isolate was done using 20 μl of conidial suspension with a concentration of 1 × 105/ml in droplets (three drops on each leaf) on four detached 45-day-old lettuce leaves cv. BBS012 (3). Fully expended leaves were placed on moist filter paper in petri dishes and were incubated in humid chambers at 25°C. The leaves inoculated with sterile water served as control. After 7 days, disease symptoms were observed, which were similar to those symptoms collected in infected fields and the fungus was reisolated and confirmed as S. solani based on morphological criteria (1) and molecular characterization (2). Control leaves remained healthy. Pathogenicity testing was completed twice. To our knowledge, this is the first report of S. solani on lettuce in Malaysia and it may become a serious problem because of its broad host range, variability in pathogenic isolates, and prolonged active phase of the disease cycle. Previous research has shown that S. solani is a causal agent of gray leaf spot on lettuce in China (4). References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Current Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) F. L. Tai. Sylloge Fungorum Sinicorum, Sci. Press, Acad. Sin., Peking, 1979.
  19. Mahmodi F, Kadir JB, Wong MY, Nasehi A, Soleimani N, Puteh A
    Plant Dis, 2013 May;97(5):687.
    PMID: 30722185 DOI: 10.1094/PDIS-09-12-0843-PDN
    Bok choy (Brassica chinensis L.) is a temperate vegetable grown in the cool highland areas of Malaysia. In June 2010, vegetable growing areas of the Cameron Highlands, located in Pahang State, Malaysia, were surveyed for the prevalence of anthracnose disease caused by Colletotrichum species. Diseased samples were randomly collected from 12 infested fields. Anthracnose incidence on bok choy varied from 8 to 36% in different nursery fields. Disease symptoms initially appeared as small water-soaked spots scattered on the leaf petioles of young plants. As these spots increased in size, they developed irregular round spots that turned to sunken grayish brown lesions surrounded by brownish borders. When the lesions were numerous, leaves collapsed. Pale buff to salmon conidial mass and acervuli were observed on well-developed lesions. The acervuli diameter varied in size from 198 to 486 μm, averaging 278.5 μm. Morphological and cultural characteristics of the fungus were examined on potato dextrose agar incubated for 7 days at 25 ± 2°C under constant fluorescent light. Vegetative mycelia were hyaline, septate, branched, and 2 to 7 μm in diameter. The color of the fungal colonies was grayish brown. Conidia were hyaline, aseptate, falcate, apices acute, and 21.8 to 28.5 × 2.6 to 3.4 mm. Setae were pale brown to dark brown, 75 to 155 μm long, base cylindrical, and tapering towards the acute tip. Appressoria were solitary or in dense groups, light to dark brown, entire edge to lobed, roundish to clavate, 6.5 to 14 × 5.8 to 8.6 μm, averaging 9.2 × 6.8 μm, and had a L/W ratio of 1.35. Based on the keys outlined by Mordue 1971 (2) and Sutton 1980 (3), the characteristics of this fungus corresponded to Colletotrichum capsici. Sequence analysis of the ITS-rDNA obtained from the Malaysian strain CCM3 (GenBank Accession No. JQ685746) using primers ITS5 and ITS4 (1) when aligned with deposited sequences from GenBank revealed 99 to 100% sequence identity with C. capsici strains (DQ286158, JQ685754, DQ286156, GQ936210, and GQ369594). A representative strain CCM3 was used for pathogenicity testing. Four non-infected detached leaves of 2-week-old B. chinensis were surface-sterilized and inoculated by placing 10 μl of conidial suspension (106 conidia ml-1) using either the wound/drop or non-wound/drop method, and distilled water was used as a control (1). Leaves were incubated at 25°C, 98% RH. The experiment was repeated twice. Five days after inoculation, typical anthracnose symptoms with acervuli formation appeared on the surface of tissues inoculated with the spore suspension, but not on the water controls. A fungus with the characteristics of C. capsici was recovered from the lesions on the inoculated leaves. Anthracnose caused by C. capsici has been reported on different vegetable crops, but not on bok choy (3). To the best of our knowledge, this is the first report of C. capsici causing anthracnose on bok choy in Malaysia. References: (1) R. Ford et al. Aust. Plant Pathol. 33:559, 2004. (2) J. E. M. Mordue. CMI Description of Pathogenic Fungi and Bacteria. Commonwealth Mycol. Inst., Kew, UK. 1971. (3) B. C. Sutton. The Genus Glomerella and its anamorph Colletotrichum. CAB International, Wallingford, UK, 1992. (4) P. P. Than et al. Plant Pathol. 57:562, 2008.
  20. Almaliky BSA, Abidin MAZ, Kader J, Wong MY
    Plant Dis, 2013 Jan;97(1):143.
    PMID: 30722276 DOI: 10.1094/PDIS-07-12-0627-PDN
    In April and June 2010, coconut seedlings with symptoms of very slow growth, yellowing of leaves, and general abnormal leaf growth were observed in germination beds in Teluk Intan, Perak, Malaysia. The roots were soft, rotten, and brown, extending upward and downward from these lesions. Rhizomorphs and basidiocarps were produced on coconut seeds near the germination eye and identified as Marasmiellus palmivorus according description by Turner (2). Three isolates were obtained by plating surface sterilized symptomatic roots and basidiocarp on malt extract agar (MEA) amended with 85% lactic acid (1 ml added to 11 of the medium). To confirm the identity of the fungus, genomic DNA was extracted from mycelia and basidiocarps of isolates and the large subunit (LSU) region was amplified and sequenced using LR0R/LR7 primers (3). All isolates had identical LSU sequences (GenBank Accession No. JQ654233 to JQ654235). Sequences were identical to each other and 99% similar to a M. palmivorus sequence deposited in the NCBI database (Accession No. AY639434).To confirm pathogenicity, three isolates of M. palmivorus that were obtained from symptomatic plant tissue was inoculated onto seeds of Malaysian Red Dwarf variety. Each isolate was grown in 100 ml of malt extract broth in 250 ml Erlenmeyer flasks and incubated at 27 ± 2°C for 5 days on an orbital shaker (125 rpm). The resulting culture was passed through two layers of sterile cloth. Mycelial suspension was obtained by blending mycelia in 100 ml of sterile water. Seeds were sterilized by soaking in 10% v/v sodium hypochlorite in distilled water for 3 min. The seeds were then rinsed three times over running tap water. The calyx portion of the seed was removed and five holes were made around the germination eye. The seeds were inoculated by injecting 2 ml of suspension into each hole. The control seeds were inoculated with sterile distilled water only. The seeds were transferred to 40-cm diameter plastic pots containing a mixture of sand, soil, and peat in the ratio of 3:2:1, respectively, and steam treated at 100°C for 1.5 h. Pots were placed in the glasshouse with normal exposures to day-night cycles, temperatures of 29 ± 4°C, and high relative humidity (85 to 95%) achieved by spraying water twice daily. After 2 months, 75% of the inoculated seeds failed to germinate. It was speculated that the artificial inoculum was higher than under germination bed conditions. Rhizomorphs and basidiocarps were produced on husk seeds near the germination eye. Seedlings that emerged successfully developed symptoms similar to those observed in the germination bed. No symptoms developed in the noninoculated seeds and seedlings. At 80 days post inoculation, basidiocarps were observed emerging from three diseased seedlings near the germination eye. Three reisolations were made on MEA from root lesions surface sterilized. Pathogenicity tests and LSU sequence analyses indicated that M. palmivorus is the causal agent of the symptoms observed on coconut seedlings. M. palmivorus was first recorded on coconuts and oil palm in the 1920s (1) and attacks the fruit and the petiole on oil palm (2). To our knowledge, this is the first report of M. palmivorus causing post-emergence damping off on coconut seedlings. References: (1) K. G. Singh. A check-list of host and diseases in Malaysia. Ministry of Agriculture and Fisheries, Malaysia, 1973. (2) P. D. Turner. Oil palm diseases and disorders. Oxford University Press. 1981. (3) R. Vilgalys et al. J. Bacteriol. 172:4238, 1990.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links