Affiliations 

  • 1 School of Biological Sciences, University Sains Malaysia, 11800 USM, Penang, Malaysia
Plant Dis, 2013 Jul;97(7):991.
PMID: 30722542 DOI: 10.1094/PDIS-10-12-0985-PDN

Abstract

Banana is the second largest cultivated fruit crop in Malaysia, and is cultivated for both the domestic market and also for export. Anthranose is a well-known postharvest disease of banana and with high potential for damaging market value, as infection commonly occurs during storage. Anthracnose symptoms were observed on several varieties of banana such as mas, berangan, awak, nangka, and rastali in the states of Perak and Penang between August and October 2011. Approximately 80% of the fruits became infected with initial symptoms characterized as brown to black spots that later became sunken lesions with orange or salmon-colored conidial masses. Infected tissues (5 × 5 mm) were surface sterilized by dipping in 1% sodium hypochlorite (NaOCl) for 3 to 5 min, rinsed with sterile distilled water, and plated onto potato dextrose agar (PDA). Direct isolation was done by transferring the conidia from conidial masses using an inoculation loop and plating onto PDA. For both methods, the PDA plates were incubated at 27 ± 1°C with cycles of 12 h light and 12 h darkness. Visible growth of mycelium was observed after 4 to 5 days of incubation. Twenty isolates with conidial masses were recovered after 7 days of incubation. The isolates produced grayish white to grayish green and grey to moss dark green colony on PDA, pale orange conidial masses, and fusiform to cylindrical and hyaline conidia with an average size of 15 to 19 × 5 to 6 μm. Appresoria were ovate to obovate, dark brown, and 9 to 15 × 7 to 12 μm and setae were present, slightly swollen at the base, with a tapered apex, and brown. The cultural and morphological characteristics of the isolates were similar to those described for C. gleosporioides (1,2,3). All the C. gloeosporioides isolates were deposited in culture collection at Plant Pathology Lab, University Sains Malaysia. For confirmation of the identity of the isolates, ITS regions were sequenced using ITS4 and ITS5 primers. The isolates were deposited in GenBank with accessions JX163228, JX163231, JX163201, JX163230, JX163215, JX163223, JX163219, JX163202, JX163225, JX163222, JX163206, JX163218, JX163208, JX163209, JX163210, JX431560, JX163212, JX163213, JX431540, and JX431562. The resulting sequences showed 99% to 100% similarity with multiple C. gloeosporioides isolates in GenBank. Pathogenicity tests were conducted using mas, berangan, awak, nangka, and rastali bananas. Fruit surfaces were sterilized with 70% ethanol and wounded using a sterile scalpel. Two inoculation techniques were performed separately: mycelia plug and conidial suspension. Mycelial disc (5 mm) and a drop of 20 μl spore suspension (106 conidia/ml) were prepared from 7-day-old culture and placed on the fruit surface. The inoculated fruits were incubated at 27 ± 1°C for 10 days at 96.1% humidity. After 3 to 4 days of inoculation, brown to black spotted lesions were observed and coalesced to become black sunken lesions. Similar anthracnose symptoms were observed on all banana varieties tested. C. gloeosporioides was reisolated from the anthracnose lesions of all the inoculated fruit in which the cultural and morphological characteristics were the same as the original isolates. To our knowledge, this is the first report of C. gloeosporioides causing anthracnose of Musa spp. in Malaysia. References: (1) P. F. Cannon et al. Mycotaxon 104:189, 2008. (2) J. E. M. Mordue. Glomerella cingulata. CMI Description of Pathogenic Fungi and Bacteria, No. 315. CAB International,1971. (3) H. Prihastuti et al. Fungal Diversity 39:89, 2009.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.