Displaying publications 1 - 20 of 990 in total

  1. Mohan K, Muralisankar T, Uthayakumar V, Chandirasekar R, Revathi N, Ramu Ganesan A, et al.
    Carbohydr Polym, 2020 Jun 15;238:116185.
    PMID: 32299552 DOI: 10.1016/j.carbpol.2020.116185
    Tropical and sub-tropical fruits are tremendous sources of polysaccharides (PSs), which are of great interest in the human welfare system as natural medicines, food and cosmetics. This review paper aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of fruit polysaccharides (FPSs). The chemical structure and biological activities, such as immunomodulatory, anti-cancer, anti-oxidant, anti-inflammatory, anti-viral, anti-coagulant and anti-diabetic effects, of PSs extracted from 53 various fruits were compared and discussed. With this wide coverage, a total of 172 scientific articles were reviewed and discussed. This comprehensive survey from previous studies suggests that the FPSs are non-toxic and highly biocompatible. In addition, this review highlights that FPSs might be excellent functional foods as well as effective therapeutic drugs. Finally, the future research advances of FPSs are also described. The content of this review will promote human wellness-based food product development in the future.
    Matched MeSH terms: Fruit/chemistry*
  2. Simpson IA
    Malayan Medical Journal, 1935;10:140-1.
    Matched MeSH terms: Fruit
  3. Tang PL, Hong WL, Yue CS, Harun S
    Bioresour Technol, 2020 Oct;314:123723.
    PMID: 32599527 DOI: 10.1016/j.biortech.2020.123723
    Pretreatment is an essential upstream process to deconstruct oil palm empty fruit bunch fiber (OPEFBF) prior to sugars production. This study aimed to investigate the efficiency of OPEFBF pretreatment using palm oil mill effluent (POME) as solvent. The effect of alkali catalyst (5%w/w NaOH and ammonia), temperature (90,120,135 °C) and time (60,120,180 min) on the efficiency of pretreatment (OPEFBF-to-solvent ratio of 1:25) was also investigated. The results indicated that POME-pretreatment (135 °C, 180 min) enhanced glucose yield by only ~56%. Glucose production was increased about 5.8-fold to 495.3 ± 5.9 mg g-1 OPEFBF when NaOH was added in POME-pretreatment (Na-P). The xylose production from OPEFBF was increased about 3.7-fold after ammonia-catalyzed POME-pretreatment. About 12.1 ± 0.2 g L-1 of ethanol was produced from Na-P-hydrolysate at molar conversion of 59.4 ± 1.4%. This research provides new insight into the use of POME as a cost-effective pretreatment solvent of OPEFBF to reduce upstream process cost by cutting down water usage.
    Matched MeSH terms: Fruit*
  4. Md Tahir P, Liew WP, Lee SY, Ang AF, Lee SH, Mohamed R, et al.
    Waste Manag, 2019 Dec;100:128-137.
    PMID: 31536923 DOI: 10.1016/j.wasman.2019.09.002
    Oil palm empty fruit bunch (EFB) is the most significant waste generated from the agricultural industry in Malaysia. Composting is one of the potential approaches to utilize EFB. However, composting of EFB is a time-consuming process, thus impractical for industrial application. The composting process can be shortened by introducing competent fungi into an optimal EFB composting system. This study was conducted to isolate and identify competent fungi that can naturally compost EFB. Samplings were carried out at eight different time points over a 20-weeks experimental period. The physical properties of EFB samples such as pH, residual oil content, and moisture content were measured and the EFB composting process that was indicated by the contents of cellulose, hemicellulose, and lignin were assessed. The fungal growth, distribution, and lignocellulolytic enzyme activities were evaluated. The results indicated that the changes in physical properties of EFB were correlated to the fungal growth. The gradual reduction in moisture content and residual oil, and the increment in pH values in EFB samples throughout the experimental period resulted in reduced fungal growth and diversity. Such phenomenon delayed EFB composting process as revealed by the changes in EFB lignin, hemicellulose, and cellulose contents. The most dominant and resilient fungi (Lichtheimia ramosa and Neurospora crassa) survived up to 16 weeks and were capable of producing various lignocellulolytic enzymes. Further understanding of these factors that would contribute to effective EFB composting could be useful for future industrial applications.
    Matched MeSH terms: Fruit
  5. Uemura Y, Sellappah V, Trinh TH, Hassan S, Tanoue KI
    Bioresour Technol, 2017 Nov;243:107-117.
    PMID: 28810504 DOI: 10.1016/j.biortech.2017.06.057
    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas.
    Matched MeSH terms: Fruit*
  6. Campos-Arceiz A, Steele MA, Carlo TA, Xiong W
    Integr Zool, 2011 Jun;6(2):71-73.
    PMID: 21645272 DOI: 10.1111/j.1749-4877.2011.00241.x
    Matched MeSH terms: Fruit*
  7. Lam SS, Liew RK, Cheng CK, Rasit N, Ooi CK, Ma NL, et al.
    J Environ Manage, 2018 May 01;213:400-408.
    PMID: 29505995 DOI: 10.1016/j.jenvman.2018.02.092
    Fruit peel, an abundant waste, represents a potential bio-resource to be converted into useful materials instead of being dumped in landfill sites. Palm oil mill effluent (POME) is a harmful waste that should also be treated before it can safely be released to the environment. In this study, pyrolysis of banana and orange peels was performed under different temperatures to produce biochar that was then examined as adsorbent in POME treatment. The pyrolysis generated 30.7-47.7 wt% yield of a dark biochar over a temperature ranging between 400 and 500 °C. The biochar contained no sulphur and possessed a hard texture, low volatile content (≤34 wt%), and high amounts of fixed carbon (≥72 wt%), showing durability in terms of high resistance to chemical reactions such as oxidation. The biochar showed a surface area of 105 m2/g and a porous structure containing mesopores, indicating its potential to provide many adsorption sites for use as an adsorbent. The use of the biochar as adsorbent to treat the POME showed a removal efficiency of up to 57% in reducing the concentration of biochemical oxygen demand (BOD), chemical oxygen demand COD, total suspended solid (TSS) and oil and grease (O&G) of POME to an acceptable level below the discharge standard. Our results indicate that pyrolysis shows promise as a technique to transform banana and orange peel into value-added biochar for use as adsorbent to treat POME. The recovery of biochar from fruit waste also shows advantage over traditional landfill approaches in disposing this waste.
    Matched MeSH terms: Fruit*
  8. Yiin CL, Yusup S, Quitain AT, Uemura Y, Sasaki M, Kida T
    Bioresour Technol, 2018 May;255:189-197.
    PMID: 29414166 DOI: 10.1016/j.biortech.2018.01.132
    The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment.
    Matched MeSH terms: Fruit*
  9. Zianor Azrina ZA, Beg MDH, Rosli MY, Ramli R, Junadi N, Alam AKMM
    Carbohydr Polym, 2017 Apr 15;162:115-120.
    PMID: 28224888 DOI: 10.1016/j.carbpol.2017.01.035
    Nanocrystalline cellulose (NCC) was isolated from oil palm empty fruit bunch pulp (EFBP) using ultrasound assisted acid hydrolysis. The obtained NCC was analysed using FESEM, XRD, FTIR, and TGA, and compared with raw empty fruit bunch fibre (REFB), empty fruit bunch pulp (EFBP), and treated empty fruit bunch pulp (TEFBP). Based on FESEM analysis, it was found that NCC has a spherical shaped after acid hydrolysis with the assistance of ultrasound. This situation was different compared to previous studies that obtained rod-like shaped of NCC. Furthermore, the crystallinity of NCC is higher compared to REFB and EFBP. According to thermal stability, the NCC obtained shows remarkable sign of high thermal stability compared to REFB and EFBP.
    Matched MeSH terms: Fruit/chemistry*
  10. Yoo HM, Park SW, Seo YC, Kim KH
    J Environ Manage, 2019 Mar 15;234:1-7.
    PMID: 30599325 DOI: 10.1016/j.jenvman.2018.11.035
    Palm kernel shells (PKS), empty fruit bunches (EFB), and trunks are by-products of the palm oil industry and form approximately 50 wt % of fresh fruit bunch (FFB). In particular, EFB accounts for approximately 20 wt % of FFB. Although large amounts of EFB are generated from palm oil mills every year in Indonesia and Malaysia, EFB is treated as waste because commercial technologies for thermo-chemical conversion of EFB into renewable energy are still under development. A robust conversion method can transform EFB into an appealing renewable energy source. In order to secure this renewable energy source, Korea can import EFB as biomass. This paper investigates literature on the status of utilization of EFB, by-products from palm oil mills in order to identify the best available technological process to use EFB as bio-solid refuse fuels (SRF). Meanwhile, physico-chemical analyses (proximate, elemental, and calorific value analyses), biomass and heavy metal content were measured in order to assess whether EFB would be suitable for use as a bio-SRF, in accordance with the Korean quality standard for SRF. According to the analysis results, EFB showed applicability to use as bio-SRF; main analysis results - moisture (9.63 wt %), ash (5.94 wt %), biomass content (97.82 wt %) and calorific value (3668 kcal kg).
    Matched MeSH terms: Fruit*
  11. Granados A, Bernard H, Brodie JF
    J Anim Ecol, 2019 06;88(6):892-902.
    PMID: 30895613 DOI: 10.1111/1365-2656.12983
    Periods of extreme food abundance, such as irregular masting events, can dramatically affect animal populations and communities, but the extent to which anthropogenic disturbances alter animal responses to mast events is not clear. In South-East Asia, dipterocarp trees reproduce in mast fruiting events every 2-10 years in some of the largest masting events on the planet. These trees, however, are targeted for selective logging, reducing the intensity of fruit production and potentially affecting multiple trophic levels. Moreover, animal responses to resource pulse events have largely been studied in systems where the major mast consumers have been extirpated. We sought to evaluate the influence of human-induced habitat disturbance on animal responses to masting in a system where key mast consumers remain extant. We used motion-triggered camera traps to quantify terrestrial mammal and bird occurrences in Sabah, Malaysian Borneo, relative to variation in fruit biomass from 69 plant families during a major (2014) and minor (2015) masting event and a non-mast year (2013), in both logged and unlogged forests. Bearded pigs (Sus barbatus) showed the clearest responses to masting and occurrence rates were highest in unlogged forest in the year following the major mast, suggesting that the pulse in fruit availability increased immigration or reproduction. We also detected local-scale spatial tracking of dipterocarp fruits in bearded pigs in unlogged forest, while this was equivocal in other species. In contrast, pigs and other vertebrate taxa in our study showed limited response to spatial or temporal variation in fruit availability in logged forest. Our findings suggest that vertebrates, namely bearded pigs, may respond to masting via movement and increased reproduction, but that these responses may be attenuated by habitat disturbance.
    Matched MeSH terms: Fruit*
  12. Chong YY, Thangalazhy-Gopakumar S, Ng HK, Lee LY, Gan S
    J Environ Manage, 2019 Oct 01;247:38-45.
    PMID: 31229784 DOI: 10.1016/j.jenvman.2019.06.049
    Fast pyrolysis is a potential technology for converting lignocellulosic biomass into bio-oil. Nevertheless, the high amounts of acid, oxygenated compounds, and water content diminish the energy density of the bio-oil and cause it to be unsuitable for direct usage. Catalytic fast pyrolysis (CFP) is able to improve bio-oil properties so that downstream upgrading processes can be economically feasible. Here, calcium oxide (CaO), magnesium oxide (MgO), and zinc oxide (ZnO) were employed due to their potential in enhancing bio-oil properties. The results showed that overall, all three catalysts positively impacted the empty fruit bunch fibre-derived bio-oil properties. Among the catalysts, CaO showed the most favorable effects in terms of reducing the acidity of the bio-oil and anhydrosugar. Thermal stability of bio-oils produced in the presence of CaO was studied as well.
    Matched MeSH terms: Fruit*
  13. Goh MS, Lam SD, Yang Y, Naqiuddin M, Addis SNK, Yong WTL, et al.
    J Hazard Mater, 2021 10 15;420:126624.
    PMID: 34329083 DOI: 10.1016/j.jhazmat.2021.126624
    In agriculture, the convenience and efficacy of chemical pesticides have become inevitable to manage cultivated crop production. Here, we review the worldwide use of pesticides based on their categories, mode of actions and toxicity. Excessive use of pesticides may lead to hazardous pesticide residues in crops, causing adverse effects on human health and the environment. A wide range of high-tech-analytical methods are available to analyse pesticide residues. However, they are mostly time-consuming and inconvenient for on-site detection, calling for the development of biosensors that detect cellular changes in crops. Such new detection methods that combine biological and physicochemical knowledge may overcome the shortage in current farming to develop sustainable systems that support environmental and human health. This review also comprehensively compiles domestic pesticide residues removal tips from vegetables and fruits. Synthetic pesticide alternatives such as biopesticide and nanopesticide are greener to the environment. However, its safety assessment for large-scale application needs careful evaluation. Lastly, we strongly call for reversions of pesticide application trends based on the changing climate, which is lacking in the current scenario.
    Matched MeSH terms: Fruit/chemistry
  14. Foo ML, Ooi CW, Tan KW, Chew IML
    Chemosphere, 2022 Jan;287(Pt 2):132108.
    PMID: 34509022 DOI: 10.1016/j.chemosphere.2021.132108
    The groundbreaking innovation and industrialization are ushering in a new era where technology development is integrated with the sustainability of materials. Over the decade, nanocrystalline cellulose (NCC) obtained from lignocellulosic biomass had created a great value in various aspects. The abundantly available empty fruit bunch (EFB) in the palm oil industry has motivated us to utilize it as a sustainable alternative for the isolation of NCC, which is a worthwhile opportunity to the waste management of EFB. Taking advantage of the shape anisotropy and amphiphilic character, NCC has been demonstrated as a natural stabilizer for oil-in-water emulsion. In this work, preparation of highly stable Pickering nanoemulsion using black cumin seed oil and NCC was attempted. Black cumin seed oil is a class of plant oil with various nutritional and pharmaceutical benefits. However, its poor solubility could substantially lower the therapeutic effect, and thus, requires a delivery system to overcome this limitation. The role of NCC in the formation of stable Pickering nanoemulsion was investigated. The emulsification process was found crucial to the resulting droplet size, whereas NCC contributed critically to its stabilization. The droplet size obtained from ultrasonication and microfluidization was approximately 400 nm, as examined using transmission electron microscopy. The droplet (oil-to-water = 2:8) has long-term stability against creaming and coalescence for more than six months. The nanoemulsion stabilized by NCC could allow a better absorption by the human body, thereby maximizing the potential of black cumin seed oil in the personal care and food industries.
    Matched MeSH terms: Fruit*
  15. Jamaludin NA, Ding P, Hamid AA
    J Sci Food Agric, 2011 Jan 30;91(2):278-85.
    PMID: 21031359 DOI: 10.1002/jsfa.4182
    Determination of physico-chemical (weight, length, diameter, stomatal density, respiration rate, colour, soluble solids concentration, titratable acidity, chlorophyll and betacyanin content) and structural changes of red-fleshed dragon fruit (Hylocereus polyrhizus (Weber) Britton & Rose) was carried out from 5 to 35 days after pollination (DAP) in order to explain their growth, development, maturations and ripening stages.
    Matched MeSH terms: Fruit/anatomy & histology; Fruit/growth & development; Fruit/chemistry*
  16. Othman R, Nuraziyan A
    J. Plant Physiol., 2010 Jan 15;167(2):131-7.
    PMID: 19729222 DOI: 10.1016/j.jplph.2009.07.015
    Subtilisin-like serine proteases (EC 3.4.21) consist of a widespread family of enzymes that is involved in various processes including in plants. The full-length cDNA (CpSUB1) and the corresponding genomic DNA for papaya subtilase have been obtained using rapid amplification of cDNA ends (RACEs) and PCR primer walking techniques, respectively. The cDNA clone contains an open reading frame of 2316bp encoding 772 amino acids with a calculated molecular mass of 82.6kDa and an isoelectric point (pI) of 8.97. The CpSUB1 gene is composed of nine exons and eight introns. The amino acid sequence encoded by CpSUB1 shared high identity (>60%) with the amino acid sequence of other plant subtilisin-like proteases. Sequence analysis of CpSUB1 revealed the presence of a possible signal peptide (25 amino acid residues) and an NH(2)-terminal prosequence (88 amino acid residues). In addition, papaya subtilase possesses the characteristic subtilisin catalytic triad amino acids namely Asp, His and Ser, together with the substrate-binding site, Asn. DNA hybridization analysis showed that subtilase gene exists as a single copy in the papaya genome. RNA hybridization analyses showed that expression of the subtilase transcripts was only detected in mesocarp but not in non-fruit tissues. Gene expression in fruit tissues reached the highest level during the ripening stage at which the fruits undergo dramatic softening process. Subsequently, pro-subtilase ( approximately 80kDa) was expressed as recombinant pro-enzyme ( approximately 97kDa), which was used to generate antiserum against papaya subtilase, anti-sub. Protein gel blot analysis using anti-sub towards total protein extracted from all ripening stages revealed that a protein with a molecular mass of approximately 70kDa reacted with the antiserum. Hence both RNA hybridization and protein gel blot analyses confirmed the presence of subtilase during papaya fruit ripening, pointing to its possible involvement in this important process.
    Matched MeSH terms: Fruit/enzymology*; Fruit/genetics; Fruit/metabolism
  17. Aliteh NA, Misron N, Aris I, Mohd Sidek R, Tashiro K, Wakiwaka H
    Sensors (Basel), 2018 Aug 01;18(8).
    PMID: 30071614 DOI: 10.3390/s18082496
    This paper aims to study a triple flat-type air coil inductive sensor that can identify two maturity stages of oil palm fruits, ripe and unripe, based on the resonance frequency and fruitlet capacitance changes. There are two types of triple structure that have been tested, namely Triple I and II. Triple I is a triple series coil with a fixed number of turns (n = 200) with different length, and Triple II is a coil with fixed length (l = 5 mm) and a different number of turns. The peak comparison between Triple I and II is using the coefficient of variation cv, which is defined as the ratio of the standard deviation to the mean to express the precision and repeatability of data. As the fruit ripens, the resonance frequency peaks from an inductance⁻frequency curve and shifts closer to the peak curve of the air, and the fruitlet capacitance decreases. The coefficient of the variation of the inductive oil palm fruit sensor shows that Triple I is smaller and more consistent in comparison with Triple II, for both resonance frequency and fruitlet capacitance. The development of this sensor proves the capability of an inductive element such as a coil, to be used as a sensor so as to determine the ripeness of the oil palm fresh fruit bunch sample.
    Matched MeSH terms: Fruit
  18. Noradira Suhaime, Masniza Sairi, Nur Biha Mohamed Nafis, Suriati Paiman, Tity Nazleen Mohamed, Zulkifly Abbas, et al.
    Sains Malaysiana, 2018;47:1571-1578.
    The maturity of mango is usually assessed by the determination of its moisture content (m.c.), soluble solid content (SSC)
    and pH. However, these techniques are either time consuming, tedious or destructive. In this research, we extend the
    application of the open-ended coaxial probe technique to determine m.c. and pH of Chok Anan mango from its dielectric
    properties from week 5 to week 17 after anthesis. The effects of frequency and m.c. on the values of the dielectric constant
    and loss factor were also investigated. The critical frequency separating the different polarizations was found to be
    inversely proportional to m.c. Also, in this research we proposed a new classification of fruit ripeness related to the number
    of weeks after anthesis. The actual dielectric properties, m.c., SSC and pH of Chok Anan mango were measured using
    standard methods. Relationships were established between the dielectric constant, loss factor, critical frequency, pH and
    m.c. The accuracy for the determination of m.c. and pH using the coaxial probe was within 1.7% and 3.0%, respectively.
    Matched MeSH terms: Fruit
  19. Simpson IA, Lim EC
    Malayan Medical Journal, 1935;10:138-9.
    Matched MeSH terms: Fruit
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links