Displaying all 9 publications

Abstract:
Sort:
  1. Teh LY, Latiffah Z
    Mycobiology, 2013 Dec;41(4):256-9.
    PMID: 24493950 DOI: 10.5941/MYCO.2013.41.4.256
    Three isolates of Penicillium pimiteouiense were recovered from sandy beach soil samples in Penang Island, Peninsular Malaysia. All the isolates were identified based on morphological characteristics and phylogenetic analysis of internal transcribed spacer regions and β-tubulin gene. This is a first record of P. pimiteouiense in Malaysia.
  2. Sakinah MAI, Latiffah Z
    Plant Dis, 2013 Aug;97(8):1110.
    PMID: 30722495 DOI: 10.1094/PDIS-09-12-0831-PDN
    Rambutan (Nephelium lappaceum L.) is among the tropical fruit grown in Malaysia and the demand for export rose in 2011. A fruit rot was observed between August and December 2011 from several areas in the states of Pulau Pinang and Perak, Malaysia. The symptoms initially appeared as light brown, water-soaked lesions that developed first in the pericarp and pulp, later enlarging and becoming dark brown. Greyish brown mycelia were observed on infected areas that turned yellowish at later stages of infection. Gliocephalotrichum bacillisporum was isolated from infected fruit by surface sterilization techniques. Conidia were mass-transferred onto potato dexstrose agar (PDA) plates and incubated at 27 ± 1°C. Tissue pieces (5 × 5 mm) excised from the margins between infected and healthy areas were then surface sterilized in 1% sodium hypochlorite for 3 to 5 min before being rinsed with distilled water, plated on PDA, and incubated at 27 ± 1°C for 7 days. Ten isolates of G. bacillisporum were obtained. Colonies on PDA were initially white before turning yellow with a feathery appearance. Microscopic characteristics on carnation leaf agar (CLA) consisted of hyaline conidia that were slightly ellipsoid to bacilliform with rounded apex ranging from 6.0 to 8.5 μm long and 2.0 to 2.5 μm wide. Conidiophores (70 to 130 μm long) were mostly single arising from large hypha approximately 13 to 16 μm. The conidiogenous structures were mostly quadriverticillate with dense, short, penicillate branches. The phialides were cylindrical and finger-like. Chlamydospores were present singly, in groups of 2 to 4, or in occasionally branched short chains and were brown in color with thick walls ranging from 11 to 13 μm. The cultural and morphological characteristics of G. bacillisporum isolates in the present study were very similar to previously published descriptions (1) except the conidiophores formed without sterile stipe extensions. All the G. bacillisporum isolates were deposited in culture collection at the Plant Pathology Lab, University Sains Malaysia, Penang. Molecular identification was accomplished from the ITS regions using ITS1 and ITS2 primers, and the β-tubulin gene using Bt2a and Bt2b primers (2). BLAST results from the ITS regions showed a 98 to 99% similarity with sequences of G. bacillisporum isolates reported in GenBank. Accession numbers of G. bacillisporum ITS regions: JX484850, JX484852, JX484853, JX484856, JX484858, JX484860, JX484862, JX484866, JX484867, and JX484868. The identity of G. bacillisporum isolates infecting rambutan was further confirmed by β-tubulin sequences (KC683909, KC683911, KC683912, KC683916, KC683919, KC683920, KC683923, KC683926, and KC683927), which showed 92 to 95% similarity with sequences of G. bacillisporum. Pathogenicity tests were also performed using mycelial plug (5 mm) and sprayed conidial suspensions (20 μl suspension of 106 conidia/ml) prepared from 7-day-old cultures. Inoculated fruits were incubated at 27 ± 1°C and after 10 days, similar rotting symptoms appeared on the fruit surface. The pathogen was reisolated from fruit rot lesions, thus fulfilling Koch's postulates, and tests were repeated twice. To our knowledge, this is the first report of G. bacillisporum causing fruit rot of rambutan (N. lappaceum L.) in Malaysia. References: (1) C. Decock et al. Mycologia 98:488, 2006. (2) N. L. Glass and G. C. Donaldson. Appl. Environ Microbiol. 61:1323, 1995.
  3. Hafizi R, Salleh B, Latiffah Z
    Braz J Microbiol, 2013;44(3):959-68.
    PMID: 24516465
    Crown disease (CD) is infecting oil palm in the early stages of the crop development. Previous studies showed that Fusarium species were commonly associated with CD. However, the identity of the species has not been resolved. This study was carried out to identify and characterize through morphological approaches and to determine the genetic diversity of the Fusarium species. 51 isolates (39%) of Fusarium solani and 40 isolates (31%) of Fusarium oxysporum were recovered from oil palm with typical CD symptoms collected from nine states in Malaysia, together with samples from Padang and Medan, Indonesia. Based on morphological characteristics, isolates in both Fusarium species were classified into two distinct morphotypes; Morphotypes I and II. Molecular characterization based on IGS-RFLP analysis produced 27 haplotypes among the F. solani isolates and 33 haplotypes for F. oxysporum isolates, which indicated high levels of intraspecific variations. From UPGMA cluster analysis, the isolates in both Fusarium species were divided into two main clusters with the percentage of similarity from 87% to 100% for F. solani, and 89% to 100% for F. oxysporum isolates, which was in accordance with the Morphotypes I and II. The results of the present study indicated that F. solani and F. oxysporum associated with CD of oil palm in Malaysia and Indonesia were highly variable.
  4. Heng MH, Baharuddin S, Latiffah Z
    Genet. Mol. Res., 2012;11(1):383-92.
    PMID: 22370941 DOI: 10.4238/2012.February.16.4
    Fusarium species section Liseola namely F. fujikuroi, F. proliferatum, F. andiyazi, F. verticillioides, and F. sacchari are well-known plant pathogens on rice, sugarcane and maize. In the present study, restriction analysis of the intergenic spacer regions (IGS) was used to characterize the five Fusarium species isolated from rice, sugarcane and maize collected from various locations in Peninsular Malaysia. From the analysis, and based on restriction patterns generated by the six restriction enzymes, Bsu151, BsuRI, EcoRI, Hin6I, HinfI, and MspI, 53 haplotypes were recorded among 74 isolates. HinfI showed the most variable restriction patterns (with 11 patterns), while EcoRI showed only three patterns. Although a high level of variation was observed, it was possible to characterize closely related species and isolates from different species. UPGMA cluster analysis showed that the isolates of Fusarium from the same species were grouped together regardless of the hosts. We conclude that restriction analysis of the IGS regions can be used to characterize Fusarium species section Liseola and to discriminate closely related species as well as to clarify their taxonomic position.
  5. Hawa MM, Salleh B, Latiffah Z
    Plant Dis, 2009 Sep;93(9):971.
    PMID: 30754569 DOI: 10.1094/PDIS-93-9-0971C
    Red-fleshed dragon fruit (Hylocereus polyrhizus [Weber] Britton & Rose) is a newly introduced and potential crop in the Malaysian fruit industry. Besides its nutritious value, the fruit is being promoted as a health crop throughout Southeast Asia. In April of 2007, a new disease was observed in major plantations of H. polyrhizus throughout five states (Kelantan, Melaka, Negeri Sembilan, Penang, and Perak) in Malaysia with 41 and 25% disease incidence and severity, respectively. Stems of H. polyrhizus showed spots or small, circular, faint pink-to-beige necrotic lesions that generally coalesced as symptoms progressed. Symptom margins of diseased stem samples were surface sterilized with a 70% alcohol swab, cut into small blocks (1.5 × 1.5 × 1.5 cm), soaked in 1% sodium hypochlorite (NaOCI) for 3 min, and rinsed in several changes of sterile distilled water (each 1 min). The surface-sterilized tissues were placed onto potato dextrose agar (PDA) and incubated under alternating 12-h daylight and black light for 7 days. A fungus was consistently isolated from the stems of symptomatic H. polyrhizus and identified as Curvularia lunata (Wakker) Beodijn (1-3) that showed pale brown multicelled conidia (phragmoconidia; three to five celled) that formed apically through a pore (poroconidia) in sympodially, elongating, geniculated conidiophores. Conidia are relatively fusiform, cylindrical, or slightly curved, with one of the central cells being larger and darker (26.15 ± 0.05 μm). All 25 isolates of C. lunata obtained from diseased H. polyrhizus are deposited at the Culture Collection Unit, Universiti Sains Malaysia and available on request. Isolates were tested for pathogenicity by injecting conidial suspensions (1 × 106 conidia/ml) and pricking colonized toothpicks on 25 healthy H. polyrhizus stems. Controls were treated with sterile distilled water and noncolonized toothpicks. All inoculated plants and controls were placed in a greenhouse with day and night temperatures of 30 to 35°C and 23 to 30°C, respectively. Development of external symptoms on inoculated plants was observed continuously every 2 days for 2 weeks. Two weeks after inoculation, all plants inoculated with all isolates of C. lunata developed stem lesions similar to those observed in the field. No symptoms were observed on the control plants and all remained healthy. C. lunata was reisolated from 88% of the inoculated stems, completing Koch's postulates. The pathogenicity test was repeated with the same results. To our knowledge, this is the first report of C. lunata causing a disease on H. polyrhizus. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, England, 1971. (2) R. R. Nelson and F. A. Hassis. Mycologia 56:316, 1964. (3) C. V. Subramanian. Fungi Imperfecti from Madras V. Curvularia. Proc. Indian Acad. Sci. 38:27, 1955.
  6. Intan Sakinah MA, Suzianti IV, Latiffah Z
    Genet. Mol. Res., 2014;13(2):3627-37.
    PMID: 24854442 DOI: 10.4238/2014.May.9.5
    Anthracnose caused by Colletotrichum species is a common postharvest disease of banana fruit. We investigated and identified Colletotrichum species associated with anthracnose in several local banana cultivars based on morphological characteristics and sequencing of ITS regions and of the β-tubulin gene. Thirty-eight Colletotrichum isolates were encountered in anthracnose lesions of five local banana cultivars, 'berangan', 'mas', 'awak', 'rastali', and 'nangka'. Based on morphological characteristics, 32 isolates were identified as Colletotrichum gloeosporioides and 6 isolates as C. musae. C. gloeosporioides isolates were divided into two morphotypes, with differences in colony color, shape of the conidia and growth rate. Based on ITS regions and β-tubulin sequences, 35 of the isolates were identified as C. gloeosporioides and only 3 isolates as C. musae; the percentage of similarity from BLAST ranged from 95-100% for ITS regions and 97-100% for β-tubulin. C. gloeosporioides isolates were more prevalent compared to C. musae. This is the first record of C. gloeosporioides associated with banana anthracnose in Malaysia. In a phylogenetic analysis of the combined dataset of ITS regions and β-tubulin using a maximum likelihood method, C. gloeosporioides and C. musae isolates were clearly separated into two groups. We concluded that C. gloeosporioides and C. musae isolates are associated with anthracnose in the local banana cultivars and that C. gloeosporioides is more prevalent than C. musae.
  7. Intan Sakinah MA, Suzianti IV, Latiffah Z
    Plant Dis, 2013 Jul;97(7):991.
    PMID: 30722542 DOI: 10.1094/PDIS-10-12-0985-PDN
    Banana is the second largest cultivated fruit crop in Malaysia, and is cultivated for both the domestic market and also for export. Anthranose is a well-known postharvest disease of banana and with high potential for damaging market value, as infection commonly occurs during storage. Anthracnose symptoms were observed on several varieties of banana such as mas, berangan, awak, nangka, and rastali in the states of Perak and Penang between August and October 2011. Approximately 80% of the fruits became infected with initial symptoms characterized as brown to black spots that later became sunken lesions with orange or salmon-colored conidial masses. Infected tissues (5 × 5 mm) were surface sterilized by dipping in 1% sodium hypochlorite (NaOCl) for 3 to 5 min, rinsed with sterile distilled water, and plated onto potato dextrose agar (PDA). Direct isolation was done by transferring the conidia from conidial masses using an inoculation loop and plating onto PDA. For both methods, the PDA plates were incubated at 27 ± 1°C with cycles of 12 h light and 12 h darkness. Visible growth of mycelium was observed after 4 to 5 days of incubation. Twenty isolates with conidial masses were recovered after 7 days of incubation. The isolates produced grayish white to grayish green and grey to moss dark green colony on PDA, pale orange conidial masses, and fusiform to cylindrical and hyaline conidia with an average size of 15 to 19 × 5 to 6 μm. Appresoria were ovate to obovate, dark brown, and 9 to 15 × 7 to 12 μm and setae were present, slightly swollen at the base, with a tapered apex, and brown. The cultural and morphological characteristics of the isolates were similar to those described for C. gleosporioides (1,2,3). All the C. gloeosporioides isolates were deposited in culture collection at Plant Pathology Lab, University Sains Malaysia. For confirmation of the identity of the isolates, ITS regions were sequenced using ITS4 and ITS5 primers. The isolates were deposited in GenBank with accessions JX163228, JX163231, JX163201, JX163230, JX163215, JX163223, JX163219, JX163202, JX163225, JX163222, JX163206, JX163218, JX163208, JX163209, JX163210, JX431560, JX163212, JX163213, JX431540, and JX431562. The resulting sequences showed 99% to 100% similarity with multiple C. gloeosporioides isolates in GenBank. Pathogenicity tests were conducted using mas, berangan, awak, nangka, and rastali bananas. Fruit surfaces were sterilized with 70% ethanol and wounded using a sterile scalpel. Two inoculation techniques were performed separately: mycelia plug and conidial suspension. Mycelial disc (5 mm) and a drop of 20 μl spore suspension (106 conidia/ml) were prepared from 7-day-old culture and placed on the fruit surface. The inoculated fruits were incubated at 27 ± 1°C for 10 days at 96.1% humidity. After 3 to 4 days of inoculation, brown to black spotted lesions were observed and coalesced to become black sunken lesions. Similar anthracnose symptoms were observed on all banana varieties tested. C. gloeosporioides was reisolated from the anthracnose lesions of all the inoculated fruit in which the cultural and morphological characteristics were the same as the original isolates. To our knowledge, this is the first report of C. gloeosporioides causing anthracnose of Musa spp. in Malaysia. References: (1) P. F. Cannon et al. Mycotaxon 104:189, 2008. (2) J. E. M. Mordue. Glomerella cingulata. CMI Description of Pathogenic Fungi and Bacteria, No. 315. CAB International,1971. (3) H. Prihastuti et al. Fungal Diversity 39:89, 2009.
  8. Li L, Mohd MH, Mohamed Nor NMI, Subramaniam S, Latiffah Z
    J Appl Microbiol, 2021 Apr;130(4):1273-1284.
    PMID: 32813902 DOI: 10.1111/jam.14828
    AIMS: To identify Botryosphaeriaceae fungal species that are associated with stem-end rot of mango, and to study their pathogenicity on mango fruit.

    METHODS AND RESULTS: Based on the sequences of internal transcribed spacer (ITS), TEF1-α and β-tubulin, as well as on the phylogenetic analysis of combined sequences, four species of Lasiodiplodia (L. theobromae,L. pseudotheobromae, L. iranensis, L. mahajangana) and two species of Neofusicoccum (N. ribis, N. parvum) were identified. Pseudofusicoccum violaceum, Neoscytalidium dimidiatum and three species of Botryosphaeria (B. scharifii, B. dothidea, B. ramosa) were identified based on sequences of ITS and TEF1-α. Pathogenicity test of selected isolates were tested on Chok Anan, Waterlily and Falan mango cultivars. Generally, all species were observed to be pathogenic on the three tested mango cultivars on wounded fruits, except for N. ribis and N. parvum, which were pathogenic on both wounded and unwounded fruits. However, N. ribis was only pathogenic on cultivar Falan, whereas B. ramosa were pathogenic on cultivars Waterlily and Falan.

    CONCLUSIONS: Eleven species of Botryosphaeriaceae were associated with mango stem-end rot in Malaysia. To the best of our knowledge, four species, namely L. mahajangana, B. ramosa, N. ribis and P. violaceum are the first recorded Botryosphaeriaceae fungi associated with stem end rot of mango.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The identification of Botryosphaeriaceae fungi is important to establish suitable control measures and quarantine requirements. Many species have a wide host range, which means that there is a possibility of cross infection from other infected plants.

  9. Latiffah Z, Mah Kok F, Heng Mei H, Maziah Z, Baharuddin S
    Trop Life Sci Res, 2010 Aug;21(1):21-9.
    PMID: 24575187 MyJurnal
    A total of 33 isolates of Fusarium sp. were isolated from soil samples collected from a mangrove forest in an area in Kampung Pantai Acheh, Balik Pulau, Pulau Pinang, Malaysia. The isolates were isolated using soil dilution, direct isolation and debris isolation techniques. The debris isolation technique yielded the most isolates, with a total of 22 Fusarium isolates. Based on identification using morphological characteristics, three Fusarium species were identified: F. solani, F. oxysporum and F. verticillioides. F. solani (91%) was the most common species recovered from the mangrove soil samples, followed by F. oxysporum (6%) and F. verticillioides (3%).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links