Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Khoo XH, Chong CW, Talha AM, Philip K, Teh CS, Isa AM, et al.
    J Gastroenterol Hepatol, 2023 Aug;38(8):1259-1268.
    PMID: 36908030 DOI: 10.1111/jgh.16174
    BACKGROUND AND AIM: The gut microbiota in irritable bowel syndrome (IBS) is known to vary with diet. We aim to (i) analyze the gut microbiota composition of IBS patients from a multi-ethnic population and (ii) explore the impact of a low FODMAP diet on gastrointestinal symptoms and gut microbiota composition among IBS patients.

    METHODS: A multi-center study of multi-ethnic Asian patients with IBS was conducted in two phases: (i) an initial cross-sectional gut microbiota composition study of IBS patients and healthy controls, followed by (ii) a single-arm 6-week dietary interventional study of the IBS patients alone, exploring clinical and gut microbiota changes.

    RESULTS: A total of 34 adult IBS patients (IBS sub-types of IBS-D 44.1%, IBS-C 32.4%, and IBS-M 23.5%) and 15 healthy controls were recruited. A greater abundance of Parabacteroides species with lower levels of bacterial fermenters and short-chain fatty acids producers were found among IBS patients compared with healthy controls. Age and ethnicity were found to be associated with gut microbiota composition. Following a low FODMAP dietary intervention, symptom and quality of life improvement were observed in 24 (70.6%) IBS patients. Symptom improvement was associated with adherence to the low FODMAP diet (46.7% poor adherence vs 92.9% good adherence, P = 0.014), and gut microbiota patterns, particularly with a greater abundance of Bifidobacterium longum, Anaerotignum propionicum, and Blautia species post-intervention.

    CONCLUSION: Gut microbiota variation in multi-ethnic IBS patients may be related to dietary intake and may be helpful to identify patients who are likely to respond to a low FODMAP diet.

  2. Iyaswamy A, Wang X, Zhang H, Vasudevan K, Wankhar D, Lu K, et al.
    J Mater Chem B, 2024 Jul 09.
    PMID: 38978513 DOI: 10.1039/d4tb00479e
    Extracellular clustering of amyloid-β (Aβ) and an impaired autophagy lysosomal pathway (ALP) are the hallmark features in the early stages of incurable Alzheimer's disease (AD). There is a pressing need to find or develop new small molecules for diagnostics and therapeutics for the early stages of AD. Herein, we report a small molecule, namely F-SLCOOH, which can bind and detect Aβ1-42, Iowa mutation Aβ, Dutch mutation Aβ fibrils and oligomers exhibiting enhanced emission with high affinity. Importantly, F-SLCOOH can readily pass through the blood-brain barrier and shows highly selective binding toward the extracellular Aβ aggregates in real-time in live animal imaging of a 5XFAD mice model. In addition, a high concentration of F-SLCOOH in both brain and plasma of wildtype mice after intraperitoneal administration was found. The ex vivo confocal imaging of hippocampal brain slices indicated excellent colocalization of F-SLCOOH with Aβ positive NU1, 4G8, 6E10 A11 antibodies and THS staining dye, affirming its excellent Aβ specificity and targetability. The molecular docking studies have provided insight into the unique and specific binding of F-SLCOOH with various Aβ species. Importantly, F-SLCOOH exhibits remarkable anti-fibrillation properties against toxic Aβ aggregate formation of Aβ1-42, Iowa mutation Aβ, and Dutch mutation Aβ. F-SLCOOH treatment also exerts high neuroprotective functions and promotes autophagy lysosomal biogenesis in neuronal AD cell models. In summary, the present results suggest that F-SLCOOH is a highly promising theranostic agent for diagnosis and therapeutics of AD.
  3. Verma N, Duseja A, Mehta M, De A, Lin H, Wong VW, et al.
    Aliment Pharmacol Ther, 2024 Mar;59(6):774-788.
    PMID: 38303507 DOI: 10.1111/apt.17891
    BACKGROUND: The precise estimation of cases with significant fibrosis (SF) is an unmet goal in non-alcoholic fatty liver disease (NAFLD/MASLD).

    AIMS: We evaluated the performance of machine learning (ML) and non-patented scores for ruling out SF among NAFLD/MASLD patients.

    METHODS: Twenty-one ML models were trained (N = 1153), tested (N = 283), and validated (N = 220) on clinical and biochemical parameters of histologically-proven NAFLD/MASLD patients (N = 1656) collected across 14 centres in 8 Asian countries. Their performance for detecting histological-SF (≥F2fibrosis) were evaluated with APRI, FIB4, NFS, BARD, and SAFE (NPV/F1-score as model-selection criteria).

    RESULTS: Patients aged 47 years (median), 54.6% males, 73.7% with metabolic syndrome, and 32.9% with histological-SF were included in the study. Patients with SFvs.no-SF had higher age, aminotransferases, fasting plasma glucose, metabolic syndrome, uncontrolled diabetes, and NAFLD activity score (p  140) was next best in ruling out SF (NPV of 0.757, 0.724 and 0.827 in overall, test and validation set).

    CONCLUSIONS: ML with clinical, anthropometric data and simple blood investigations perform better than FIB-4 for ruling out SF in biopsy-proven Asian NAFLD/MASLD patients.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links