Displaying publications 21 - 26 of 26 in total

Abstract:
Sort:
  1. Isiyaku AK, Ali AH, Nayan N
    Beilstein J Nanotechnol, 2020;11:695-702.
    PMID: 32461871 DOI: 10.3762/bjnano.11.57
    Indium tin oxide (ITO) is a widely used material for transparent conductive oxide (TCO) films due to its good optical and electrical properties. Improving the optoelectronic properties of ITO films with reduced thickness is crucial and quite challenging. ITO-based multilayer films with an aluminium-silver (Al-Ag) interlayer (ITO/Al-Ag/ITO) and a pure ITO layer (as reference) were prepared by RF and DC sputtering. The microstructural, optical and electrical properties of the ITO/Al-Ag/ITO (IAAI) films were investigated before and after annealing at 400 °C. X-ray diffraction measurements show that the insertion of the Al-Ag intermediate bilayer led to the crystallization of an Ag interlayer even at the as-deposited stage. Peaks attributed to ITO(222), Ag(111) and Al(200) were observed after annealing, indicating an enhancement in crystallinity of the multilayer films. The annealed IAAI film exhibited a remarkable improvement in optical transmittance (86.1%) with a very low sheet resistance of 2.93 Ω/sq. The carrier concentration increased more than twice when the Al-Ag layer was inserted between the ITO layers. The figure of merit of the IAAI multilayer contact has been found to be high at 76.4 × 10-3 Ω-1 compared to a pure ITO contact (69.4 × 10-3 Ω-1). These highly conductive and transparent ITO films with Al-Ag interlayer can be a promising contact for low-resistance optoelectronics devices.
  2. Sim LC, Wong JL, Hak CH, Tai JY, Leong KH, Saravanan P
    Beilstein J Nanotechnol, 2018;9:353-363.
    PMID: 29515949 DOI: 10.3762/bjnano.9.35
    Carbon dots (CDs) and graphitic carbon nitride (g-C3N4) composites (CD/g-C3N4) were successfully synthesized by a hydrothermal method using urea and sugarcane juice as starting materials. The chemical composition, morphological structure and optical properties of the composites and CDs were characterized using various spectroscopic techniques as well as transmission electron microscopy. X-ray photoelectron spectroscopy (XPS) results revealed new signals for carbonyl and carboxyl groups originating from the CDs in CD/g-C3N4 composites while X-ray diffraction (XRD) results showed distortion of the host matrix after incorporating CDs into g-C3N4. Both analyses signified the interaction between g-C3N4 and CDs. The photoluminescence (PL) analysis indicated that the presence of too many CDs will create trap states at the CD/g-C3N4 interface, decelerating the electron (e-) transport. However, the CD/g-C3N4(0.5) composite with the highest coverage of CDs still achieved the best bisphenol A (BPA) degradation rate at 3.87 times higher than that of g-C3N4. Hence, the charge separation efficiency should not be one of the main factors responsible for the enhancement of the photocatalytic activity of CD/g-C3N4. Instead, the light absorption capability was the dominant factor since the photoreactivity correlated well with the ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) results. Although the CDs did not display upconversion photoluminescence (UCPL) properties, the π-conjugated CDs served as a photosensitizer (like organic dyes) to sensitize g-C3N4 and injected electrons to the conduction band (CB) of g-C3N4, resulting in the extended absorption spectrum from the visible to the near-infrared (NIR) region. This extended spectral absorption allows for the generation of more electrons for the enhancement of BPA degradation. It was determined that the reactive radical species responsible for the photocatalytic activity were the superoxide anion radical (O2•-) and holes (h+) after performing multiple scavenging tests.
  3. Leong KH, Aziz AA, Sim LC, Saravanan P, Jang M, Bahnemann D
    Beilstein J Nanotechnol, 2018;9:628-648.
    PMID: 29527438 DOI: 10.3762/bjnano.9.59
    The utilisation of sunlight as an abundant and renewable resource has motivated the development of sustainable photocatalysts that can collectively harvest visible light. However, the bottleneck in utilising the low energy photons has led to the discovery of plasmonic photocatalysts. The presence of noble metal on the plasmonic photocatalyst enables the harvesting of visible light through the unique characteristic features of the noble metal nanomaterials. Moreover, the formation of interfaces between noble metal particles and semiconductor materials further results in the formation of a Schottky junction. Thereby, the plasmonic characteristics have opened up a new direction in promoting an alternative path that can be of value to the society through sustainable development derived through energy available for all for diverse applications. We have comprehensively prepared this review to specifically focus on fundamental insights into plasmonic photocatalysts, various synthesis routes, together with their strengths and weaknesses, and the interaction of the plasmonic photocatalyst with pollutants as well as the role of active radical generation and identification. The review ends with a pinnacle insight into future perspectives regarding realistic applications of plasmonic photocatalysts.
  4. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK
    Beilstein J Nanotechnol, 2018;9:1050-1074.
    PMID: 29719757 DOI: 10.3762/bjnano.9.98
    Nanomaterials (NMs) have gained prominence in technological advancements due to their tunable physical, chemical and biological properties with enhanced performance over their bulk counterparts. NMs are categorized depending on their size, composition, shape, and origin. The ability to predict the unique properties of NMs increases the value of each classification. Due to increased growth of production of NMs and their industrial applications, issues relating to toxicity are inevitable. The aim of this review is to compare synthetic (engineered) and naturally occurring nanoparticles (NPs) and nanostructured materials (NSMs) to identify their nanoscale properties and to define the specific knowledge gaps related to the risk assessment of NPs and NSMs in the environment. The review presents an overview of the history and classifications of NMs and gives an overview of the various sources of NPs and NSMs, from natural to synthetic, and their toxic effects towards mammalian cells and tissue. Additionally, the types of toxic reactions associated with NPs and NSMs and the regulations implemented by different countries to reduce the associated risks are also discussed.
  5. Anthonysamy SBI, Afandi SB, Khavarian M, Mohamed ARB
    Beilstein J Nanotechnol, 2018;9:740-761.
    PMID: 29600136 DOI: 10.3762/bjnano.9.68
    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO2, and Al2O3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH3 catalyst are suggested.
  6. Akbari E, Arora VK, Enzevaee A, Ahmadi MT, Saeidmanesh M, Khaledian M, et al.
    Beilstein J Nanotechnol, 2014;5:726-34.
    PMID: 24991510 DOI: 10.3762/bjnano.5.85
    Carbon, in its variety of allotropes, especially graphene and carbon nanotubes (CNTs), holds great potential for applications in variety of sensors because of dangling π-bonds that can react with chemical elements. In spite of their excellent features, carbon nanotubes (CNTs) and graphene have not been fully exploited in the development of the nanoelectronic industry mainly because of poor understanding of the band structure of these allotropes. A mathematical model is proposed with a clear purpose to acquire an analytical understanding of the field-effect-transistor (FET) based gas detection mechanism. The conductance change in the CNT/graphene channel resulting from the chemical reaction between the gas and channel surface molecules is emphasized. NH3 has been used as the prototype gas to be detected by the nanosensor and the corresponding current-voltage (I-V) characteristics of the FET-based sensor are studied. A graphene-based gas sensor model is also developed. The results from graphene and CNT models are compared with the experimental data. A satisfactory agreement, within the uncertainties of the experiments, is obtained. Graphene-based gas sensor exhibits higher conductivity compared to that of CNT-based counterpart for similar ambient conditions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links