Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Arina Nasruddin, Azura Amid
    MyJurnal
    Curcuma longa L. uses widely as a traditional medicine especially in India and China for the treatment of diabetic wounds, inflammatory, hepatic, and digestive disorders. These effects lead to the research of this plant for the treatment of chronic diseases. To assess the tumour inhibition effect of curcumin in animal models by integrating various studies into a systematic literature review (SLR) and meta-analysis. Studies of curcumin treatment in tumor-induced animal models were searched in electronic databases. The assessment of the quality of the studies included and the tumor inhibition effect used SYRCLE’s Risk of Bias tool and Review Manager (The Cochrane Collaboration) software. From the 732 articles identified, only 11 studies met the selection criteria and included in the analysis. Curcumin significantly inhibited the tumor volume in the animal models in overall, and the subgroup analyses revealed that high dose, long-duration curcumin treatment, and intervention by injection have a more significant effect compared to the opposite group. Curcumin was effective in inhibiting tumor volume in animal models. The study quality and heterogeneity of the meta-analysis can probably be improved if a larger-scale bases of animal models and a well-designed study were available
  2. Azlin Suhaida Azmi, Mohamed Anwar Awan, Azura Amid, Noor Illi Mohamad Puad, Fathilah Binti Ali
    MyJurnal
    Carbon capture and storage (CCS) involves capturing, transporting and storing CO2 geologically underground permanently. Carbon capture using solvent such as amine and aqueous ammonia has been extensively studied by many researchers. However, this capture technology for CCS scheme is costly. As an alternative, CO2 emission can be cost-effectively captured and stored by utilizing the well-understood natural photosynthetic process of marine cyanobacteria. In contrast, the capturing process using cyanobacteria is very slow compared to the chemical absorption mentioned prior. Hence, this study aimed to investigate carbon capturing and storing process using integrated aqueous ammonia and mutated marine cyanobacteria (Synechococcus PCC 7002 IIUM01). The conditions that can maximize CO2 reduction under various conditions; CO2 flow rate (Lpm), absorption temperature (C) and aqueous ammonia concentrations (% (w/v)) were to be identified. The effectiveness of the mutant cyanobacteria was quantified by measuring the cell concentration, percentage reduction in CO2 concentration and lipid content. Synechococcus PCC 7002 IIUM01 showed it robustness by growing in aqueous ammonia solution at the concentration of 0.5 to 1% (w/v) at which the parent strain was not able to tolerate. The best conditions in maximizing CO2 capture and storage while sustaining growth optimally and being a potential biofuel source was observed at 0.5 Lpm of 15% CO2 gas flow rate, 0.75% (w/v) of ammonia concentration and 33C of absorption temperature. At this specified condition, around 68% of CO2 removal was achieved with 9% (w/w) yield of lipid and more than 13% (w/v) of cell concentration obtained.
  3. Arina Nasruddin, Azura Amid, Muhd Ezza Faiez Othman
    MyJurnal
    Green chemical method was applied to synthesize nanoparticles using recombinant
    bromelain. Among the numerous applications of recombinant bromelain, there is still no research
    on nanoparticles synthesis which encourages its utilization in this study. Four chemicals which are
    copper (II) chloride dihydrate (CuCl2.2H2O), cerium nitrate hexahydrate (Ce(NO3)3.6H2O), sodium
    selenite (Na2SeO3), and iron (III) chloride hexahydrate (FeCl3.6H2O) were selected to be screened
    for the suitability in nanoparticles biosynthesis by recombinant bromelain. The nanoparticles
    formed were characterized by using UV-visible absorption spectra. The biosynthesis process then
    was optimized by varying the centrifugation speed, temperature, and time to get the maximum
    absorption and weight of nanoparticles through central composite design (CCD) tool. Only
    CuCl2.2H2O showed a positive result for the screening process which was represented by the
    formation of colloidal solution and a maximum absorption at 580 nm. Thus, optimization was
    carried out for this chemical. Based on the optimization model, maximum absorption and weight
    were predicted at 67.5°C, 2 hrs, and 9,600 rpm. These optimal conditions were validated by
    repeating the biosynthesis process. The absorption and weight of the nanoparticles depended on the
    reaction of the chemical with recombinant bromelain. 3D plots showed that the optimal condition
    for high responses mostly depends on temperature and time.
  4. Sarah Amalina Adli, Fathilah Binti Ali, Azlin Suhaida Azmi, Hazleen Anuar, Rosnani Hasham
    MyJurnal
    Patches has recently emerged and attracting more attention for its versatility in many areas such as cosmetic, pharmaceutical and medical. Patches can either be used to administer selected drug to skin or deliver some beneficial ingredients for cosmetic purposes. With that, as polymer is used as the matrix for patches, the polymer selected must be non-toxic, have adhesive property and non-irritative to the skin. Currently, synthetic polymer had been used as the matrix. However, as time passes, people are more concern with the environment, therefore biopolymer is chosen over synthetic polymer as they are degradable and also safe to use. Nowadays, as consumers are demanding for a more effective product that is not only good for appearance but also the health of the skin, studies had been done on many kinds of active ingredient that will give the best effect to the skin. Thus in this paper, patches made up of different combinations of polymer and active ingredients, as well as fabrication method currently used to produce patches will be discussed.
  5. Hosen, MD Sabuj, Mariatul Fadzillah Mansor, Alam, MD Zahangir
    MyJurnal
    Biogas is an economical and environmentally friendly renewable energy which can be produced by anaerobic digestion (AD). This biochemical method converts organic compounds (mainly from wastes) into a sustainable source of energy. Anaerobic co-digestion (AcoD) is a method combining more than one substrate to resolve the difficulties faced in a single substrate AD system. Solid wastes increases as the population increase so do the urbanization and industrial industries. Food waste and sewage sludge are examples of one of the solid wastes. Co-digesting of both substrates may improve process stabilization to increase biogas production and overcome the nutrients imbalance. Thus, anaerobic co-digestion has been recognized as a technology that could provide a clean renewable energy source and helps reduce the landfill problem. The objective of this paper is to investigate the recent achievements and perspectives on the interaction of co-digestion between food waste and sewage sludge to improve biogas production. This may provide valuable information on the optimization of combinations of substrates: food waste and sewage sludge and prediction of bioreactor performance.
  6. Phirdaous Abbas, Yumi Zuhanis Has-Yun Hashim, Hamzah Mohd Salleh, Saripah Salbiah Syed Abdul Azzizz
    MyJurnal
    Uninfected agarwood branch is readily available as raw material in agarwood plantation as new practices of agarwood plantation scheme were opted as substitute to the endangered wild type agarwood. The uninfected branch can be easily obtained during pruning process (one of plantation’s common maintenance procedure), throughout the years before inoculation stage. This current study aimed to investigate the optimal extraction process conditions of agarwood branch using ethanol as solvent system for maximal yield, and assess its cytotoxic effects towards MCF-7 breast cancer cells. Uninfected branch of Aquilaria subintegra was subjected to One Factor at a Time (OFAT) and Response Surface Methodology (RSM)-guided ethanolic extraction to achieve maximal yield. The extract was then subjected to cytotoxicity, cell attachment and cell viability assays, respectively. Optimization Run 2 (temperature 45 °C, solid-liquid ratio of 1:30, 16 hours maceration) gave the highest agarwood branch ethanolic extract (ABEE) yield of 44.70 ± 18.9 mg/g dried material (DM). Meanwhile Run 7 (temperature 45 °C, solid-liquid ratio of 1:10, 16 hours of maceration) gave the lowest yield (19.34 ± 14.1 mg/g DM). However, while maintaining the 16 hour-maceration, the model predicted a slightly lower yield of 30.232 ± 0.266 mg/g DM of ABEE with process conditions of 45 °C and solid-liquid ratio of 1:19 when the desirable parameters were factored in namely using (ⅰ) the most suitable temperature (that does not risk the bioactivities of the extract), and (ⅱ) an economical volume of solvent. Crude ABEE obtained from the optimal process conditions resulted in cytotoxicity effects on MCF-7 breast cancer cells with IC50 estimate of 3.645 ± 0.099 μg/mL. The extract also affected MCF-7 cell attachment and viability with altered morphology. More work to elucidate the mechanism of actions of the extract are warranted; which could further lead to development of breast cancer natural product-based therapeutics.
  7. Nik-Rashida Nik-Abdul-Ghani, Mohammed Saedi Jami, Ku Mariam Zainab Ku Abdullah
    MyJurnal
    Lead contamination present in wastewater is one of the major problems due to its toxicity and persistence. This issue increased dramatically and led to the environmental and health concerns worldwide. Therefore, this study aims to remove lead from synthetic wastewater effluent by adsorption process. In this study, nanomaterial called graphene oxide (GO) is used as an adsorbent due to its mechanical strength and high surface area. The parameters were optimized using Fractional factorial design under response surface method. GO demonstrates high adsorption capacity, qmax = 500 mg/g at 100 mg/L of initial lead concentration and at optimum pH 9. Adsorption isotherm of lead was also investigated to evaluate the adsorption capacity. The equilibrium data of graphene oxide adsorption was better represented by the Langmuir isotherm and was achieved within 60 minutes. The results showed that GO has potential to be an important adsorbent for lead removal. In the future, GO might be imbedded as adsorbent in the membrane fabrication for wastewater treatment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links