Displaying publications 21 - 40 of 81 in total

Abstract:
Sort:
  1. Hasanpourghadi M, Looi CY, Pandurangan AK, Sethi G, Wong WF, Mustafa MR
    Curr Drug Targets, 2017;18(9):1086-1094.
    PMID: 27033190 DOI: 10.2174/1389450117666160401124842
    Phytometabolites are functional elements derived from plants and most of them exhibit therapeutic characteristics such as anti-cancer, anti-inflammatory and anti-oxidant effects. Phytometabolites exert their anti-cancer effect by targeting multiple signaling pathways. One of the remarkable phenomena targeted by phytometabolites is the Warburg effect. The Warburg effect describes the observation that cancer cells exhibit an increased rate of glycolysis and aberrant redox activity compared to normal cells. This phenomenon promotes further cancer development and progression. Recent observations revealed that some phytometabolites could target metabolic-related enzymes (e.g. Hexokinase, Pyruvate kinase M2, HIF-1) in cancer cells, with little or no harm to normal cells. Since hyper-proliferation of cancer cells is fueled by higher cellular metabolism, phytometabolites targeting these metabolic pathways can create synergistic crosstalk with induced apoptotic pathways and sensitize cancer cells to chemotherapeutic agents. In this review, we discuss phytometabolites that target the Warburg effect and the underlying molecular mechanism that leads to tumor growth suppression.
  2. Thent ZC, Chakraborty C, Mahakkanukrauh P, Nik Ritza Kosai Nik Mahmood N, Rajan R, Das S
    Curr Drug Targets, 2017;18(11):1250-1258.
    PMID: 27138760 DOI: 10.2174/1389450117666160502151600
    BACKGROUND: Recently, there are scientific attempts to discover new drugs in the biotechnology industry in order to treat various diseases including atherosclerosis.

    OBJECTIVE: The main objective of the present review was to highlight the cellular, molecular biology and inflammatory process related to the atheromatous plaques.

    METHODS: A thorough literature search of Pubmed, Google and Scopus databases was done.

    RESULTS: Atherosclerosis is considered to be a leading cause of death throughout the world. Atherosclerosis involves oxidative damage to the cells with production of reactive oxygen species (ROS). Development of atheromatous plaques in the arterial wall is a common feature. Specific inflammatory markers pertaining to the arterial wall in atherosclerosis may be useful for both diagnosis and treatment. These include Nitric oxide (NO), cytokines, macrophage inhibiting factor (MIF), leucocytes and Pselectin. Modern therapeutic paradigms involving endothelial progenitor cells therapy, angiotensin II type-2 (AT<sub>2</sub>R) and ATP-activated purinergic receptor therapy are notable to mention.

    CONCLUSION: Future drugs may be designed aiming three signalling mechanisms of AT<sub>2</sub>R which are (a) activation of protein phosphatases resulting in protein dephosphorylation (b) activation of bradykinin/nitric oxide/cyclic guanosine 3&#039;,5&#039;-monophosphate pathway by vasodilation and (c) stimulation of phospholipase A(2) and release of arachidonic acid. Drugs may also be designed to act on ATP-activated purinergic receptor channel type P2X7 molecules which acts on cardiovascular system.

  3. Chakraborty C, Teoh SL, Das S
    Curr Drug Targets, 2017;18(14):1653-1663.
    PMID: 27231109 DOI: 10.2174/1389450117666160527142321
    BACKGROUND: The present era is fast experiencing rapid innovation in the genome-editing technology. CRISPR Cas9-mediated targeted genetic manipulation is an easy, cost-effective and scalable method. As a result, it can be used for a broad range of targeted genome engineering.

    OBJECTIVE: The main objective of the present review is to highlight the structural signature, classification, its mechanism and application from basic science to medicine and future challenges for this genome editing tool kit.

    RESULTS: The present review provides a brief description of the recent development of CRISPR-Cas9 genome editing technology. We discuss the paradigms shift for this next generation genome editing technology, CRISPR. The CRISPR structural significance, classification and its different applications are also being discussed. We portray the future challenges for this extraordinary genome in vivo editing tool. We also highlight the role of CRISPR genome editing in curing many diseases.

    CONCLUSION: Scientists and researchers are constantly looking one genome editing tool that is competent, simple and low-cost assembly of nucleases. It can target any particular site without any off-target mutations in the genome. The CRISPR-Cas9 has all of the above characteristics. The genome engineering technology may be a strong and inspiring technology meant for the next generation of drug development.

  4. Khalid A, Shakeel R, Justin S, Iqbal G, Shah SAA, Zahid S, et al.
    Curr Drug Targets, 2017;18(13):1545-1557.
    PMID: 28302036 DOI: 10.2174/1389450118666170315120627
    BACKGROUND: Stress is involved in memory impairment through multiple mechanisms, including activation of hypothalamic-pituitary axis, which in turn activates release of corticosterone in blood. Cholinergic system blockade by the muscarinic antagonist, scopolamine, also impairs memory.

    OBJECTIVE: This study aimed to investigate the effect of turmeric (20mg/kg) on learning and memory and cholinergic system in a mouse model of stress along with cholinergic blockade.

    METHODS: Restrained stress was induced and cholinergic receptors were blocked using scopolamine in mice. Animals were treated with turmeric (turmeric rhizome powder which was also subjected to NMR analyses) and learning and social behavior was examined. Effect of turmeric on cholinergic muscarinic receptors (mAChR; M1, M3 and M5) gene expression was assessed by RT-PCR in both pre-frontal cortex and hippocampus.

    RESULTS: Ar-turmerone, curcuminoids and α-linolenic acid were the lead compounds present in turmeric extract. Increased serum corticosterone levels were observed in stressed mice when compared to the control group, while turmeric treatment significantly reduced serum corticosterone level. Turmeric treatment caused an improved learning and memory in Morris water maze test in stressed animals. Social novelty preference was also restored in turmeric treated animals. Following turmeric treatment, M5 expression was improved in the cortex and M3 expression was improved in the hippocampus of stress + scopolamine + turmeric treated group.

    CONCLUSIONS: These findings highlight the therapeutic role of turmeric by increasing the expression of M3, M5 and improving learning and memory. Turmeric can be an effective candidate for the treatment of amnesia caused by the stress.

  5. Chung PY
    Curr Drug Targets, 2017;18(4):414-420.
    PMID: 27758704 DOI: 10.2174/1389450117666161019102025
    Pseudomonas aeruginosa is the most common Gram-negative bacterium associated with nosocomial and life-threatening chronic infections in cystic fibrosis patients. This pathogen is wellknown for its ability to attach to surfaces of indwelling medical devices to form biofilms, which consist of a regular array of extracellular polymers. Tenaciously bound to the surface of devices and inherently resilient to antibiotic treatment, P. aeruginosa poses a serious threat in clinical medicine and contributes to the persistence of chronic infections. Studies on microbial biofilms in the past decade involved mainly the understanding of environment signals, genetic elements and molecular mechanisms in biofilm formation, tolerance and dispersal. The knowledge obtained from the studies of these mechanisms is crucial in the establishment of strategies to eradicate or to prevent biofilm formation. Currently, biofilm infections are usually treated with combinations of antibiotics and surgical removal, in addition to frequent replacement of the infected device. More recently, specific natural sources have been identified as antibiofilm agents against this pathogen. This review will highlight the recent progress made by plant-derived compounds against P. aeruginosa biofilm infections in both in vitro or in vivo models.
  6. Mai CW, Chung FF, Leong CO
    Curr Drug Targets, 2017;18(11):1259-1268.
    PMID: 27993111 DOI: 10.2174/1389450117666161216125344
    BACKGROUND: Recent reports indicate that the tumor microenvironment plays a pivotal role in cancer development and progression, leading to a paradigm shift in the way cancer is studied and targeted. In contrast to traditional approaches, where only tumor cells are targeted for the treatment, an emerging approach is to develop therapeutics which target the tumor microenvironment while complementing or enhancing current treatments. Legumain (LGMN) is a newly identified target which is highly expressed in the tumor microenvironment and in tumor cells, and holds potential both as a biomarker and as a therapeutic target.

    CONCLUSION: This review will be the first to summarize the expression of LGMN in common cancers, as well as its roles in tumorigenesis and metastasis. This review also discusses the current developments and future prospects of targeting LGMN through the development of DNA vaccines, azopeptides, small molecule inhibitors and LGMN activated prodrugs, highlighting the potential of LGMN as a target for cancer therapeutics.

  7. Thent ZC, Zaidun NH, Azmi MF, Senin MI, Haslan H, Salehuddin R
    Curr Drug Targets, 2017;18(6):734-750.
    PMID: 27919208 DOI: 10.2174/1389450118666161205125548
    Colorectal cancer (CRC) remains one of the major leading causes of cancer related morbidity and mortality. Apart from the conventional anti-neoplastic agents, metformin, a biguanide anti-diabetic agent, has recently found to have anti-cancer property. Several studies observed the effect of metformin towards its anti-cancer effect on colon or colorectal cancer in diabetic patients. However, only a few studies showed its effect on colorectal cancer in relation to the non-diabetic status. The present review aimed to highlight the insight into the molecular pathway of metformin towards colorectal cancer in the absence of diabetes mellitus. In CRC-independent of diabetes mellitus, highly deregulation of PI3K/AKT pathway is found which activates the downstream mammalian target of rapamycin (mTOR). Metformin inhibits cancer growth in colon by suppressing the colonic epithelial proliferation by inhibiting the mTOR pathway. Metformin exerts its anti-neoplastic effects by acting on tumour suppressor pathway via activating the adenosine monophosphate.activated protein kinase (AMPK) signaling pathway. Metformin interrupts the glucose metabolism by activating the AMPK. Metformin reduces tumour cell growth and metastasis by activating the p53 tumour suppressor gene. In addition to its therapeutic benefits, metformin is easily accessible, cost effective with better tolerance to the patients compared to the chemotherapeutic agents. This review summarised modern findings on the therapeutic applications of metformin on the colorectal cancer with no evidences of diabetes mellitus.
  8. Tan KX, Danquah MK, Sidhu A, Yon LS, Ongkudon CM
    Curr Drug Targets, 2018 02 08;19(3):248-258.
    PMID: 27321771 DOI: 10.2174/1389450117666160617120926
    BACKGROUND: The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability.

    OBJECTIVE: The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release.

    RESULTS: This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects.

    CONCLUSION: A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with stage-wise delivery mechanism is presented to illustrate the potential efficacy of aptamer- polymer cargos for enhanced cell targeting and drug delivery.

  9. Ling LS, Sidi H, Lope RAR, Das S, Baharudin A
    Curr Drug Targets, 2018 May 11.
    PMID: 29749310 DOI: 10.2174/1389450119666180511161420
    Transgender is a complex state of bio-psycho-social dimension of human sexuality. It encompasses cognitive-emotional-behavior component that makes the person unique in his or her sexual expression. Transgender tend to use cross sex hormone in order to eradicate their secondary sexual characteristics and to facilitate the shift to their experienced gender. The common masculinising sex hormone use, i.e. Female to Male Treatment Options (FMTO) is testosterone and for feminising hormone i.e. Male to Female Treatment Options (MFTO) is a combination of estrogen with anti-androgen, respectively. Cross sex hormone, i.e. FMTO, or MFTO has biological and psychological influences on the transgender individuals. Nevertheless, cross sex hormone may also poses a range of side effect profiles, varies from the biological to psychosocial impact. The psychological impact can be paramount until it causes severe mental-health problems and even suicide. Numerous ranges of bio-psycho-social influence of cross-sex hormone were highlighted in this review as fundamental core knowledge in the art to know practice when dealing with the treatment options. In psychiatry, the change in the biological appearance may have great influence in the transgender individual, especially in the context of psychosocial and cultural perspective.
  10. Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2018;19(5):439-450.
    PMID: 26343111 DOI: 10.2174/1389450116666150907100838
    BACKGROUND: Vitamin C, traditionally associated with scurvy, is an important nutrient for maintaining bone health. It is essential in the production of collagen in bone matrix. It also scavenges free radicals detrimental to bone health.

    OBJECTIVE: This review aims to assess the current evidence of the bone-sparing effects of vitamin C derived from cell, animal and human studies.

    RESULTS: Cell studies showed that vitamin C was able to induce osteoblast and osteoclast formation. However, high-dose vitamin C might increase oxidative stress and subsequently lead to cell death. Vitamin C-deficient animals showed impaired bone health due to increased osteoclast formation and decreased bone formation. Vitamin C supplementation was able to prevent bone loss in several animal models of bone loss. Human studies generally showed a positive relationship between vitamin C and bone health, indicated by bone mineral density, fracture probability and bone turnover markers. Some studies suggested that the relationship between vitamin C and bone health could be U-shaped, more prominent in certain subgroups and different between dietary and supplemental form. However, most of the studies were observational, thus could not confirm causality. One clinical trial was performed, but it was not a randomized controlled trial, thus confounding factors could not be excluded.

    CONCLUSION: vitamin C may exert beneficial effects on bone, but more rigorous studies and clinical trials should be performed to validate this claim.

  11. Kadir ZS, Sidi H, Kumar J, Das S, Midin M, Baharuddin N
    Curr Drug Targets, 2018;19(8):916-926.
    PMID: 28228081 DOI: 10.2174/1389450118666170222153908
    Vaginismus is an involuntary muscle contraction of the outer third of vaginal barrel causing sexual penetration almost impossible. It is generally classified under sexual pain disorder (SPD). In Diagnostic and Statistical Manual, 5th edition (DSM-5), it is classified under the new rubric of Genito-Pelvic Pain/Sexual Penetration Disorder. This fear-avoidance condition poses an ongoing significant challenge to the medical and health professionals due to the very demanding needs in health care despite its unpredictable prognosis. The etiology of vaginismus is complex: through multiple biopsycho- social processes, involving bidirectional connections between pelvic-genital (local) and higher mental function (central regulation). It has robust neural and psychological-cognitive loop feedback involvement. The internal neural circuit involves an inter-play of at least two-pathway systems, i.e. both "quick threat assessment" of occipital-limbic-occipital-prefrontal-pelvic-genital; and the chronic pain pathways through the genito-spinothalamic-parietal-pre-frontal system, respectively. In this review, a neurobiology root of vaginismus is deliberated with the central role of an emotional-regulating amygdala, and other neural loop, i.e. hippocampus and neo-cortex in the core psychopathology of fear, disgust, and sexual avoidance. Many therapists view vaginismus as a neglected art-and-science which demands a better and deeper understanding on the clinico-pathological correlation to enhance an effective model for the bio-psycho-social treatment. As vaginismus has a strong presentation in psychopathology, i.e. fear of penetration, phobic avoidance, disgust, and anticipatory anxiety, we highlighted a practical psychiatric approach to the clinical management of vaginismus, based on the current core knowledge in the perspective of neuroscience.
  12. Syarifah-Noratiqah SB, Naina-Mohamed I, Zulfarina MS, Qodriyah HMS
    Curr Drug Targets, 2018;19(8):927-937.
    PMID: 28356027 DOI: 10.2174/1389450118666170328122527
    Neurodegenerative disease is an incurable disease which involves the degeneration or death of the nerve cells. Alzheimer's Disease (AD) is a neurodegenerative disease discovered in 1906 by Alois Alzheimer, a German clinical psychiatrist and neuroanatomist. The main pathological hallmarks of this disease are the formation of extracellular amyloid β (Aβ) plaques and intracellular neurofibrillary tangle (NFT). The accumulation of the amyloid protein aggregates in the brain of AD patients leads to oxidative stress and inflammation. Other postulated reasons for the development of this disease are cholinergic depletion and excessive glutamatergic neurotransmission. The current drugs approved and marketed for the treatment of AD are cholinesterase inhibitors (ChEIs) and N-methyl-Daspartate (NMDA) receptor antagonists. The function of ChEIs is to avoid cholinergic depletion; whereas the function of NMDA receptor antagonist is to block excessive glutamatergic neurotransmission. Unfortunately, the current drugs prescribed for AD show only modest improvement in terms of symptomatic relief and delay the progression of the disease. This review will discuss about several polyphenolic compounds as potential natural treatment options for AD. Three compounds are highlighted in this review - Curcumin (Cur), Resveratrol (Rsv) and Epigallocatechin-3- gallate (EGCG). These compounds have huge potential for AD treatment, especially due to their low frequency of adverse events. However, the current conventional pharmaceutical drugs remain as the mainstay of treatment for AD.
  13. Adam RL, Sidi H, Midin M, Zakaria H, Das S, Mat KC
    Curr Drug Targets, 2018;19(12):1402-1411.
    PMID: 28464773 DOI: 10.2174/1389450118666170502130126
    Sexuality is an important dimension in human beings as a form of expression of individuality. For many decades, sexual functioning has been a neglected area among patients suffering from schizophrenia. It was a presumption that patients with schizophrenia could be asexual and this could be secondary to overwhelming situations of delusion, hallucination, hostility and negative symptoms among others. The deficient in sexual functioning are due to innate factors, i.e. negative symptoms (apathy, avolition and amotivation) and also as a result of prefrontal dysfunction, i.e. inability to plan and execute meaningful relationship. Adverse effects of the psychopharmacological agents, especially the typical antipsychotics, e.g. dystonia, excessive sedation and hyperprolactinemia may interfere with patients' sexual activity. In this review, we highlight the neurobiology of schizophrenia in the context of understanding sexual functioning and to integrate the knowledge of dopamine-serotonin neurotransmitter's interaction and the receptors' target. Interventional approaches consist of psychopharmacological and psychosocial interventions. In the perspective of sexuality, we recommend atypical antipsychotic should be placed as the first line treatment for both drug naïve patients and also to patients who are already receiving psychopharmacological agents in consideration for a drug-switch from typical to atypical antipsychotics. Aripiprazole, clozapine, olanzapine and quetiapine exert benefits in terms of sexual functioning recovery due to their atypical mechanism of action. However, the potential adverse effect like metabolic syndrome should be adequately managed to prevent negative consequences. Psychosocial interventions, i.e. psychoeducation, destigmatization, supportive psychotherapy and psychiatric rehabilitation also play a crucial role in the management. In conclusion, restoration of sexual function is an achievable recovery target in patients with schizophrenia through these biopsycho- social interventions.
  14. Yusof F, Sidi H, Das S, Midin M, Kumar J, Hatta MH
    Curr Drug Targets, 2018;19(8):856-864.
    PMID: 27993112 DOI: 10.2174/1389450117666161215161108
    Premature ejaculation (PE) is one of the commonest male sexual dysfunctions. It is characterized by ejaculation which occurs before or soon after vaginal penetration, which causes significant psychological distress to the individual, and his partner. The exact cause of PE is still unknown but several mechanisms are proposed, and these involve complex interactions of neurophysiological, psychosocial, and cognitive factors. We discuss the role of serotonin, nitric oxide, phosphodiesterase enzymes and other neurotransmitters. Treatment of PE tends to co-occur with other sexual difficulties, especially erectile dysfunction (ED). Treatment with selective serotonin reuptake inhibitors (SSRIs) and Dapoxitene are also discussed in detail. The treatment strategy requires a comprehensive holistic approach incorporating both combination of psychopharmacological agent and cognitive-behavioral therapy (CBT). The present review highlights the integration of the hypothalamic-neural and reverberating emotional circuit and discusses the etiology and treatment for patients with PE.
  15. Ei Thu H, Hussain Z, Shuid AN
    Curr Drug Targets, 2018;19(8):865-876.
    PMID: 27894237 DOI: 10.2174/1389450117666161125174625
    Psychotic disorders are recognized as severe mental disorders that rigorously affect patient's personality, critical thinking, and perceptional ability. High prevalence, global dissemination and limitations of conventional pharmacological approaches compel a significant burden to the patient, medical professionals and the healthcare system. To date, numerous orally administered therapies are available for the management of depressive disorders, schizophrenia, anxiety, bipolar disorders and autism spectrum problems. However, poor water solubility, erratic oral absorption, extensive first-pass metabolism, low oral bioavailability and short half-lives are the major factors which limit the pharmaceutical significance and therapeutic feasibility of these agents. In recent decades, nanotechnology-based delivery systems have gained remarkable attention of the researchers to mitigate the pharmaceutical issues related to the antipsychotic therapies and to optimize their oral drug delivery, therapeutic outcomes, and patient compliance. Therefore, the present review was aimed to summarize the available in vitro and in vivo evidences signifying the pharmaceutical importance of the advanced delivery systems in improving the aqueous solubility, transmembrane permeability, oral bioavailability and therapeutic outcome of the antipsychotic agents.
  16. Rappek NAM, Sidi H, Kumar J, Kamarazaman S, Das S, Masiran R, et al.
    Curr Drug Targets, 2018;19(12):1352-1358.
    PMID: 28025939 DOI: 10.2174/1389450117666161227142947
    Sexual dysfunctions are commonly seen in women on selective serotonin reuptake inhibitors (SSRIs). The complexities of female sexual functioning are reflected through modulation of inter- playing factors like the neuropsychophysiological factors, inter-personal and relationship issue, psychiatric co-morbidities and physical disorder. The incidence of SSRIs-induced FSD is difficult to estimate because of the potential confounding effects of SSRIs, presence of polypharmacy, marital effect, socio-cultural factors and due to the design and assessment problems in majority of the studies. The exact mechanism of FSD-induced SSRIs is unknown. It has been postulated that although SSRIs may modulate other neurotransmitter system such as nitric oxide (NO), noradrenergic and dopamine in inducing FSD. In the present review, we highlight current evidence regarding potential mechanism of SSRIs in causing FSD, which include low sexual desire (low libido), arousal difficulties (lack of lubrication), and anorgasmia. The specific association of FSD to SSRI use, has not been ellucidated. The relationship is dose-dependent, and may vary among the groups with respect to mechanism of serotonin and dopamine reuptake, induction of release of prolactin from the pituitary gland, anticholinergic side-effects, inhibition of NO synthesis and emotional-memory circuit encryption for sexual experiences. Various interventional strategies exist regarding the treatment of SSRI-induced FSD and this includes tolerance, titration dosage, substitution to another antidepressant drug and psychotherapy. There is a need of better understanding of SSRIs-induced FSD for better treatment outcome.
  17. Pandey M, Choudhury H, Yi CX, Mun CW, Phing GK, Rou GX, et al.
    Curr Drug Targets, 2018;19(15):1782-1800.
    PMID: 29792143 DOI: 10.2174/1389450119666180523092100
    Diabetes mellitus, a metabolic disorder of glucose metabolism, is mainly associated with insulin resistance to the body cells, or impaired production of insulin by the pancreatic β-cells. Insulin is mainly required to regulate glucose metabolism in type 1 diabetes mellitus patients; however, many patients with type 2 diabetes mellitus also require insulin, especially when their condition cannot be controlled solely by oral hypoglycemic agents. Hence, major research is ongoing attempting to improve the delivery of insulin in order to make it more convenient to patients who experience side effects from the conventional treatment procedure or non-adherence to insulin regimen due to multiple comorbid conditions. Conventionally, insulin is administered via subcutaneous route which is also one of the sole reasons of patient's non-compliance due to the invasiveness of this method. Several attempts have been done to improve patient compliance, reduce side effects, improve delivery adherence, and to enhance the pharmaceutical performance of the insulin therapy. Despite facing substantial challenges in developing efficient delivery systems for insulin, vast research studies have been carried out for the development of smart delivery systems to deliver insulin via ocular, buccal, pulmonary, oral, transdermal, as well as rectal routes. Therefore, the present review was aimed to overview the challenges encountered with the current insulin delivery systems and to summarize recent advancements in technology of various novel insulin delivery systems being discovered and introduced in the current market.
  18. Kalra K, Chandrabose ST, Ramasamy TS, Kasim NHBA
    Curr Drug Targets, 2018;19(13):1463-1477.
    PMID: 29874998 DOI: 10.2174/1389450119666180605112917
    Diabetes mellitus is one of the leading causes of death worldwide. Loss and functional failure of pancreatic β-cells, the parenchyma cells in the islets of Langerhans, progress diabetes mellitus. The increasing incidence of this metabolic disorder necessitates efficient strategies to produce functional β-cells for treating diabetes mellitus. Human induced Pluripotent Stem Cells (hiPSC), hold potential for treating diabetes ownig to their self-renewal capacity and the ability to differentiate into β- cells. iPSC technology also provides unlimited starting material to generate differentiated cells for regenerative applications. Progress has also been made in establishing in-vitro culture protocols to yield definitive endoderm, pancreatic endoderm progenitor cells and β-cells via different reprogramming strategies and growth factor supplementation. However, these generated β-cells are still immature, lack functional characteristics and exhibit lower capability in reversing the diseases conditions. Current methods employed to generate mature and functional β-cells include; use of small and large molecules to enhance the reprogramming and differentiation efficiency, 3D culture systems to improve the functional properties and heterogeneity of differentiated cells. This review details recent advancements in the generation of mature β-cells by reprogramming stem cells into iPSCs that are further programmed to β-cells. It also provides deeper insight into current reprogramming protocols and their efficacy, focusing on the underlying mechanism of chemical-based approach to generate iPSCs. Furthermore, we have highlighted the recent differentiation strategies both in-vitro and in-vivo to date and the future prospects in the generation of mature β-cells.
  19. Putteeraj M, Lim WL, Teoh SL, Yahaya MF
    Curr Drug Targets, 2018;19(14):1710-1720.
    PMID: 29577854 DOI: 10.2174/1389450119666180326125252
    Brain ischemia is among the leading cause of death with majority of the cases are associated with ischemic strokes. It can occur in two forms of either focal or global ischemia. Neurodegenerative disorder such as Alzheimer and Parkinson diseases is also on the rise worldwide. These disorders have common similarities; i.e. they all affecting the central nervous system with debilitating effect to the patient. In this review, we look into the promising role of flavonoids, a natural bioactive compound found abundant in vegetables, fruits and traditional herbs. Treatment with flavonoids such as curcumin, lycopene, ginsenoside, vitexin and baicalin have shown promising neuroprotective effects against ischemic-induced injury. Besides anticancer, antioxidant and immunomodulation properties, flavonoid also exerts neuroprotective effects by increases neuronal viability, increases tissue perfusion and cerebral blood flow and reduce ischemic-related apoptosis. In addition, flavonoid also exerts anti-amyloidogenic effect and reduces loss of dopaminergic neurons in the brain. These results suggesting flavonoids might be able to serve as a potential therapeutic agent in brain disorders.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links