Displaying publications 21 - 40 of 54 in total

Abstract:
Sort:
  1. Jamil NAM, Rahmad N, Rosli NHM, Al-Obaidi JR
    Electrophoresis, 2018 12;39(23):2954-2964.
    PMID: 30074628 DOI: 10.1002/elps.201800185
    Wax apple is one of the underutilized fruits that is considered a good source of fibers, vitamins, minerals as well as antioxidants. In this study, a comparative analysis of the developments of wax fruit ripening at the proteomic and metabolomic level was reported. 2D electrophoresis coupled with MALDI-TOF/TOF was used to compare the proteome profile from three developmental stages named immature, young, and mature fruits. In general, the protein expression profile and the identified proteins function were discussed for their potential roles in fruit physiological development and ripening processes. The metabolomic investigation was also performed on the same samples using quadrupole LC-MS (LC-QTOF/MS). Roles of some of the differentially expressed proteins and metabolites are discussed in relation to wax apple ripening during the development. This is the first study investigating the changes in the proteins and metabolites in wax apple at different developmental stages. The information obtained from this research will be helpful in developing biomarkers for breeders and help the plant researchers to avoid wax apple cultivation problems such as fruit cracking.
  2. Jayapalan JJ, Ng KL, Razack AH, Hashim OH
    Electrophoresis, 2012 Jul;33(12):1855-62.
    PMID: 22740474 DOI: 10.1002/elps.201100608
    Diagnosis of prostate cancer (PCa) is currently much reliant on the invasive and time-consuming transrectal ultrasound-guided biopsy of the prostate gland, particularly in light of the inefficient use of prostate-specific antigen as its biomarker. In the present study, we have profiled the sera of patients with PCa and benign prostatic hyperplasia (BPH) using the gel- and lectin-based proteomics methods and demonstrated the significant differential expression of apolipoprotein AII, complement C3 beta chain fragment, inter-alpha-trypsin inhibitor heavy chain 4 fragment, transthyretin, alpha-1-antitrypsin, and high molecular weight kininogen (light chain) between the two groups of patients' samples. Our data are suggestive of the potential use of the serum proteins as complementary biomarkers to effectively discriminate PCa from BPH, although this requires further extensive validation on clinically representative populations.
    Matched MeSH terms: Electrophoresis, Gel, Two-Dimensional
  3. Jayapalan JJ, Ng KL, Shuib AS, Razack AH, Hashim OH
    Electrophoresis, 2013 Jun;34(11):1663-9.
    PMID: 23417432 DOI: 10.1002/elps.201200583
    The present study was aimed at the identification of proteins that are differentially expressed in the urine of patients with prostate cancer (PCa), those with benign prostatic hyperplasia (BPH) and age-matched healthy male control subjects. Using a combination of 2DE and MS/MS, significantly lower expression of urinary saposin B and two different fragments of inter-alpha-trypsin inhibitor light chain (ITIL) was demonstrated in the PCa patients compared to the controls. However, only one of the ITIL fragments was significantly different between the PCa and BPH patients. When image analysis was performed on urinary proteins that were transferred onto NC membranes and detected using a lectin that binds to O-glycans, a truncated fragment of inter-alpha-trypsin inhibitor heavy chain 4 was the sole protein found to be significantly enhanced in the PCa patients compared to the controls. Together, these urinary peptide fragments might be useful complementary biomarkers to indicate PCa as well as to distinguish it from BPH, although further epidemiological evidence on the specificity and sensitivity of the protein candidates is required.
    Matched MeSH terms: Electrophoresis, Gel, Two-Dimensional
  4. Jeffery Daim LD, Ooi TE, Ithnin N, Mohd Yusof H, Kulaveerasingam H, Abdul Majid N, et al.
    Electrophoresis, 2015 Aug;36(15):1699-710.
    PMID: 25930948 DOI: 10.1002/elps.201400608
    The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense.
    Matched MeSH terms: Electrophoresis, Gel, Two-Dimensional
  5. Jessie K, Jayapalan JJ, Rahim ZH, Hashim OH
    Electrophoresis, 2014 Dec;35(24):3504-11.
    PMID: 25223738 DOI: 10.1002/elps.201400252
    Prolonged chewing of betel quid is known to cause oral diseases, including cancer. The present study was performed to screen for aberrant proteins in the saliva of habitual betel quid chewers compared to nonchewers. Saliva of female subjects (n = 10) who had been chewing betel quid for more than 20 years and nonbetel quid chewers (n = 10) of the same gender and range of age was analyzed by gel-based proteomics. Increased structural microheterogeneity of saliva haptoglobin beta chains indicated by shifts of focused spots similar to that earlier reported in patients with oral squamous cell carcinoma, and their relatively higher abundance compared to nonbetel quid chewers, were detected in saliva protein profiles of all chewers. In addition, the majority of the betel quid chewers also showed significant higher abundance of hemopexin, alpha-1B glycoprotein, alpha1-antitrypsin, complement C3, and transthyretin. These proteins had previously been associated with several different cancers. Our data demonstrated different forms of protein aberration in the saliva of betel quid chewers, which may be indicative of early oral precancerous conditions.
    Matched MeSH terms: Electrophoresis, Gel, Two-Dimensional
  6. Jessie K, Jayapalan JJ, Ong KC, Abdul Rahim ZH, Zain RM, Wong KT, et al.
    Electrophoresis, 2013 Sep;34(17):2495-502.
    PMID: 23784731 DOI: 10.1002/elps.201300107
    Confirmation of oral squamous cell cancer (OSCC) currently relies on histological analysis, which does not provide clear indication of cancer development from precancerous lesions. In the present study, whole saliva proteins of patients with OSCC (n = 12) and healthy subjects (n = 12) were separated by 2DE to identify potential candidate biomarkers that are much needed to improve detection of the cancer. The OSCC patients' 2DE saliva protein profiles appeared unique and different from those obtained from the healthy subjects. The patients' saliva α1-antitrypsin (AAT) and haptoglobin (HAP) β chains were resolved into polypeptide spots with increased microheterogeneity, although these were not apparent in their sera. Their 2DE protein profiles also showed presence of hemopexin and α-1B glycoprotein, which were not detected in the profiles of the control saliva. When subjected to densitometry analysis, significant altered levels of AAT, complement C3, transferrin, transthyretin, and β chains of fibrinogen and HAP were detected. The increased levels of saliva AAT, HAP, complement C3, hemopexin, and transthyretin in the OSCC patients were validated by ELISA. The strong association of AAT and HAP with OSCC was further supported by immunohistochemical staining of cancer tissues. The differently expressed saliva proteins may be useful complementary biomarkers for the early detection and/or monitoring of OSCC, although this requires validation in clinically representative populations.
    Matched MeSH terms: Electrophoresis, Gel, Two-Dimensional
  7. Keyon AS, Guijt RM, Gaspar A, Kazarian AA, Nesterenko PN, Bolch CJ, et al.
    Electrophoresis, 2014 May;35(10):1496-503.
    PMID: 24591173 DOI: 10.1002/elps.201300353
    Paralytic shellfish toxins (PSTs) are produced by marine and freshwater microalgae and accumulate in shellfish including mussels, oysters, and scallops, causing possible fatalities when inadvertently consumed. Monitoring of PST content of shellfish is therefore important for food safety, with currently approved methods based on HPLC, using pre- or postcolumn oxidation for fluorescence detection (HPLC-FLD). CE is an attractive alternative for screening and detection of PSTs as it is compatible with miniaturization and could be implemented in portable instrumentation for on-site monitoring. In this study, CE methods were developed for C(4) D, FLD, UV absorption detection, and MS-making this first report of C(4) D and FLD for PSTs detection. Because most oxidized toxins are neutral, MEKC was used in combination with FLD. The developed CZE-UV and CZE-C(4) D methods provide better resolution, selectivity, and separation efficiency compared to CZE-MS and MEKC-FLD. The sensitivity of the CZE-C(4) D and MEKC-FLD methods was superior to UV and MS, with LOD values ranging from 140 to 715 ng/mL for CZE-C(4) D and 60.9 to 104 ng/mL for MEKC-FLD. With the regulatory limit for shellfish samples of 800 ng/mL, the CZE-C(4) D and MEKC-FLD methods were evaluated for the screening and detection of PSTs in shellfish samples. While the CZE-C(4) D method suffered from significant interferences from the shellfish matrix, MEKC-FLD was successfully used for PST screening of a periodate-oxidized mussel sample, with results confirmed by HPLC-FLD. This confirms the potential of MEKC-FLD for screening of PSTs in shellfish samples.
    Matched MeSH terms: Electrophoresis, Capillary/methods*
  8. Kwan SH, Wan-Ibrahim WI, Juvarajah T, Fung SY, Abdul-Rahman PS
    Electrophoresis, 2021 02;42(3):233-244.
    PMID: 33085102 DOI: 10.1002/elps.202000142
    Milk serves as the sole nutrition for newborns, as well as a medium for the transfer of immunological components from the mother to the baby. This study reveals different glycoprotein profiles obtained from human, bovine, and caprine milk and their potential roles in supporting infant growth. Proteins from these three milk samples are separated and analyzed using two-dimensional gel electrophoresis (2-DE). Glycosylated proteins from all samples are enriched by affinity chromatography using lectins from the seeds of Artocarpus integer before analysis using LC/MS-QTOF. The glycoproteome profiling demonstrates that glycosylated proteins are higher in caprine milk compared to other samples. Analysis using LC/MS-QTOF identified 42 O-glycosylated and 56 N-glycosylated proteins, respectively. Among those identified, human milk has 17 glycoproteins, which are both O- and N-glycosylated, whereas caprine and bovine have 10 and 1, respectively. Only glycoproteins from human milk have shown positive matching to important human biological pathways, such as vesicle-mediated transport, immune system and hemostasis pathways. Human milk remains unique for human babies with the presence of antibodies in the form of immunoglobulins that are lacking in ruminant milk proteomes.
  9. Lian Z, Chan Y, Luo Y, Yang X, Koh KS, Wang J, et al.
    Electrophoresis, 2020 06;41(10-11):891-901.
    PMID: 31998972 DOI: 10.1002/elps.201900403
    Scale-up in droplet microfluidics achieved by increasing the number of devices running in parallel or increasing the droplet makers in the same device can compromise the narrow droplet-size distribution, or requires high fabrication cost, when glass- or polymer-based microdevices are used. This paper reports a novel way using parallelization of needle-based microfluidic systems to form highly monodispersed droplets with enhanced production rates yet in cost-effective way, even when forming higher order emulsions with complex inner structure. Parallelization of multiple needle-based devices could be realized by applying commercially available two-way connecters and 3D-printed four-way connectors. The production rates of droplets could be enhanced around fourfold (over 660 droplets/min) to eightfold (over 1300 droplets/min) by two-way connecters and four-way connectors, respectively, for the production of the same kind of droplets than a single droplet maker (160 droplets/min). Additionally, parallelization of four-needle sets with each needle specification ranging from 34G to 20G allows for simultaneous generation of four groups of PDMS microdroplets with each group having distinct size yet high monodispersity (CV < 3%). Up to six cores can be encapsulated in double emulsion using two parallelly connected devices via tuning the capillary number of middle phase in a range of 1.31 × 10-4 to 4.64 × 10-4 . This study leads to enhanced production yields of droplets and enables the formation of groups of droplets simultaneously to meet extensive needs of biomedical and environmental applications, such as microcapsules with variable dosages for drug delivery or drug screening, or microcapsules with wide range of absorbent loadings for water treatment.
  10. Liew YK, Neela V, Hamat RA, Nordin SA, Chong PP
    Electrophoresis, 2013 Feb;34(3):397-400.
    PMID: 23161123 DOI: 10.1002/elps.201200380
    The typical concentration of protein loaded varies from 0.13 to 1.40 μg/μL for a classical silver staining method in 2DE gel. Here, we present a simple modified classical silver staining method by modifying the silver impregnation and development reaction steps. This modified method detects the protein spots at extremely low loaded concentrations, ranging from 0.0048 to 0.0480 μg/μL. We recommend this modified silver staining as an excellent method for the limited biological samples used for silver-stained 2DE analysis. Altogether, the protocol takes close to two days from first dimension separation to second dimension separation, followed by silver staining, scanning, and analysis.
    Matched MeSH terms: Electrophoresis, Gel, Two-Dimensional/methods*
  11. Lim CY, Junit SM, Aziz AA, Jayapalan JJ, Hashim OH
    Electrophoresis, 2018 12;39(23):2965-2973.
    PMID: 30280388 DOI: 10.1002/elps.201800258
    The hypolipidemic effects of Tamarindus indica fruit pulp extract (Ti-FPE) have been earlier reported but the underlying molecular mechanisms are still uncertain. In this study, hamsters fed with Ti-FPE, both in the absence and presence of high-cholesterol diet, were shown to have significantly reduced levels of serum triglyceride, LDL-C and total cholesterol. The Ti-FPE-fed non-hypercholesterolemic hamsters also showed significant enhanced levels of serum apolipoprotein A1, antithrombin III, transferrin and vitamin D binding protein. In diet-induced hypercholesterolemic hamsters, apolipoprotein A1, antithrombin III and transferrin, which were relatively low in levels, became significantly enhanced when the hamsters were fed with Ti-FPE. These Ti-FPE-fed hypercholesterolemic hamsters also showed significant higher levels of serum vitamin D binding protein. When the different treated groups of hamsters were analyzed for the levels of the four serum proteins by ELISA, similar altered abundance were detected. Ingenuity Pathway Analysis of the Ti-FPE modulated serum proteins singled out "Lipid metabolism, molecular transport, small molecule biochemistry" as the top network. Our results suggest that the hypolipidemic effects of Ti-FPE are associated with alterations of serum proteins that are known to be cardioprotective and involved in the metabolism of lipids. The MS data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD010232.
  12. Mohamed E, Abdul-Rahman PS, Doustjalali SR, Chen Y, Lim BK, Omar SZ, et al.
    Electrophoresis, 2008 Jun;29(12):2645-50.
    PMID: 18494030 DOI: 10.1002/elps.200700828
    A 35 kDa glycoprotein whose abundance was previously demonstrated to be enhanced in sera of patients with endometrial adenocarcinoma (n = 12), was isolated from pooled sera of three of the cancer patients using champedak galactose-binding lectin affinity chromatography in the present study. Subjecting it to 2-DE and MS/MS, the glycoprotein was identified as the O-glycosylated fragment of inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4). When compared to control sera (n = 17), expression of the 35 kDa ITIH4 cleavage fragment was demonstrated to be significantly enhanced in sera of patients with breast carcinoma (n = 10), epithelial ovarian carcinoma (n = 10), and germ cell ovarian carcinoma (n = 10) but not in patients with nasopharyngeal carcinoma (n = 13) and osteosarcoma (n = 7). The lectin-based electrophoretic bioanalytical method adopted in the present study may be used to assess the physiological relevance of ITIH4 fragmentation and its correlation with different malignancies, their stages and progression.
    Matched MeSH terms: Electrophoresis, Gel, Two-Dimensional
  13. Mohd Maidin NN, Buyong MR, A Rahim R, Mohamed MA
    Electrophoresis, 2021 10;42(20):2033-2059.
    PMID: 34346062 DOI: 10.1002/elps.202100043
    Dielectrophoresis (DEP) is a technique to manipulate trajectories of polarisable particles in nonuniform electric fields by utilizing unique dielectric properties. The manipulation of a cell using DEP has been demonstrated in various modes, thereby indicating potential applications in the biomedical field. In this review, recent DEP applications in the biomedical field are discussed. This review is intended to highlight research work that shows significant approach related to DEP application in biomedical field reported between 2016 and 2020. First, single-shell model and multiple-shell model of cells are introduced. Current device structures and recently introduced electrode patterns for DEP applications are discussed. Second, the biomedical uses of DEP in liquid biopsies, stem cell-based therapies, and diagnosis of infectious diseases due to bacteria and viruses are presented. Finally, the challenges in DEP research are discussed, and the reported solutions are explained. DEP's potential research directions are mentioned.
  14. Mohtar MN, Hoettges KF, Hughes MP
    Electrophoresis, 2014 Feb;35(2-3):345-51.
    PMID: 24132700 DOI: 10.1002/elps.201300420
    Alternating-current electro-osmosis, a phenomenon of fluid transport due to the interaction between an electrical double layer and a tangential electric field, has been used both for inducing fluid movement and for the concentration of particles suspended in the fluid. This offers many advantages over other phenomena used to trap particles, such as placing particles at an electrode centre rather than an edge; benefits of scale, where electrodes hundreds of micrometers across can trap particles from the molecules to cells at the same rate; and a trapping volume limited by the vortex height, a phenomenon thus far unstudied. In this paper, the collection of particles due to alternating-current electro-osmosis driven collection is examined for a range of particle concentrations, inter-electrode gap widths, chamber heights and media viscosity and density. A model of collection behaviour is described where particle collection over time is governed by two processes, one driven by the vortices and the other by sedimentation, allowing the determination of the maximum height of vortex-driven collection, but also indicates how trapping is limited by high particle concentrations and fluid velocities. The results also indicate that viscosity, rather than density, is a significant governing factor in determining the trapping behaviour of particles.
  15. Nolan MJ, Jex AR, Upcroft JA, Upcroft P, Gasser RB
    Electrophoresis, 2011 Aug;32(16):2075-90.
    PMID: 23479788
    We barcoded 25 in vitro isolates (representing 92 samples) of Giardia duodenalis from humans and other animals, which have been assembled by the Upcroft team at the Queensland Institute of Medical Research over a period of almost three decades. We used mutation scanning-coupled sequencing of loci in the triosephosphate isomerase, glutamate dehydrogenase and β-giardin genes, combined with phylogenetic analysis, to genetically characterise them. Specifically, the isolates (n514) of G. duodenalis from humans from Australia (AD113; BRIS/83/HEPU/106; BRIS/87/HEPU/713; BRIS/89/HEPU/1003; BRIS/92/HEPU/1541; BRIS/92/HEPU/1590; BRIS/92/HEPU/2443; BRIS/93/HEPU/1706), Malaysia (KL/92/IMR/1106) and Afghanistan (WB), a cat from Australia (BAC2), a sheep from Canada (OAS1) and a sulphur-crested cockatoo from Australia (BRIS/95/HEPU/2041) represented assemblage A (sub-assemblage AI-1, AI-2 or AII-2); isolates (n510) from humans from Australia (BRIS/91/HEPU/1279; BRIS/92/HEPU/2342; BRIS/92/HEPU/2348; BRIS/93/HEPU/1638; BRIS/93/HEPU/1653; BRIS/93/HEPU/1705; BRIS/93/HEPU/1718; BRIS/93/HEPU/1727), Papua New Guinea (BRIS/92/HEPU/1487) and Canada (H7) represented assemblage B (sub-assemblage BIV) and an isolate from cattle from Australia (BRIS/92/HEPU/1709) had a match to assemblage E. Isolate BRIS/90/HEPU/1229 from a human from Australia was shown to represent a mixed population of assemblages A and B. These barcoded isolates (including stocks and derived lines) now allow direct comparisons of experimental data among laboratories and represent a massive resource for transcriptomic, proteomic, metabolic and functional genomic studies using advanced molecular technologies.
  16. Rozaini AZA, Abdulhameed A, Deivasigamani R, Nadzreen N, Zin NM, Kayani AA, et al.
    Electrophoresis, 2023 Aug;44(15-16):1220-1233.
    PMID: 37259263 DOI: 10.1002/elps.202200276
    Characterization of antibiotic-resistant bacteria is a significant concern that persists for the rapid classification and analysis of the bacteria. A technology that utilizes the manipulation of antibiotic-resistant bacteria is key to solving the significant threat of these pathogenic bacteria by rapid characterization profile. Dielectrophoresis (DEP) can differentiate between antibiotic-resistant and susceptible bacteria based on their physical structure and polarization properties. In this work, the DEP response of two Gram-positive bacteria, namely, Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-susceptible S. aureus (MSSA), was investigated and simulated. The DEP characterization was experimentally observed on the bacteria influenced by oxacillin and vancomycin antibiotics. MSSA control without antibiotics has crossover frequencies ( f x 0 ${f_{x0}}$ ) from 6 to 8 MHz, whereas MRSA control is from 2 to 3 MHz. The f x 0 ${f_{x0}}$ changed when bacteria were exposed to the antibiotic. As for MSSA, the f x 0 ${f_{x0}}$ decreased to 3.35 MHz compared to f x 0 ${f_{x0}}$ MSSA control without antibiotics, MRSA, f x 0 ${f_{x0}}$ increased to 7 MHz when compared to MRSA control. The changes in the DEP response of MSSA and MRSA with and without antibiotics were theoretically proven using MyDEP and COMSOL simulation and experimentally based on the modification to the bacteria cell walls. Thus, the DEP response can be employed as a label-free detectable method to sense and differentiate between resistant and susceptible strains with different antibiotic profiles. The developed method can be implemented on a single platform to analyze and identify bacteria for rapid, scalable, and accurate characterization.
  17. See HH, Hauser PC, Ibrahim WA, Sanagi MM
    Electrophoresis, 2010 Jan;31(3):575-82.
    PMID: 20119968 DOI: 10.1002/elps.200900380
    Rapid and direct online preconcentration followed by CE with capacitively coupled contactless conductivity detection (CE-C(4)D) is evaluated as a new approach for the determination of glyphosate, glufosinate (GLUF), and aminophosphonic acid (AMPA) in drinking water. Two online preconcentration techniques, namely large volume sample stacking without polarity switching and field-enhanced sample injection, coupled with CE-C(4)D were successfully developed and optimized. Under optimized conditions, LODs in the range of 0.01-0.1 microM (1.7-11.1 microg/L) and sensitivity enhancements of 48- to 53-fold were achieved with the large volume sample stacking-CE-C(4)D method. By performing the field-enhanced sample injection-CE-C(4)D procedure, excellent LODs down to 0.0005-0.02 microM (0.1-2.2 microg/L) as well as sensitivity enhancements of up to 245- to 1002-fold were obtained. Both techniques showed satisfactory reproducibility with RSDs of peak height of better than 10%. The newly established approaches were successfully applied to the analysis of glyphosate, glufosinate, and aminophosphonic acid in spiked tap drinking water.
    Matched MeSH terms: Electrophoresis, Capillary/methods*
  18. Seriramalu R, Pang WW, Jayapalan JJ, Mohamed E, Abdul-Rahman PS, Bustam AZ, et al.
    Electrophoresis, 2010 Jul;31(14):2388-95.
    PMID: 20575108 DOI: 10.1002/elps.201000164
    The use of lectin affinity chromatography prior to 2-DE separation forms an alternative method to unmask the expression of targeted glycoproteins of lower abundance in serum samples. Reduced expression of alpha-2 macroglobulin (AMG) and complement factor B (CFB) was detected in sera of patients with nasopharyngeal carcinoma (NPC) when pooled serum samples of the patients and those of healthy individuals were subjected to affinity isolation using immobilized champedak mannose-binding lectin and analyzed by 2-DE and densitometry. The AMG and CFB spots were not detected in the 2-DE protein profiles when the same pooled serum samples were subjected to albumin and IgG depletion and neither were they detected when the depleted samples were analyzed by western blotting and lectin detection. Together with other acute-phase response proteins that were previously reported to be altered in expression in NPC patients, AMG and CFB may serve as useful complementary biomarkers for NPC.
    Matched MeSH terms: Electrophoresis, Gel, Two-Dimensional/methods
  19. Tai CT, See HH
    Electrophoresis, 2019 02;40(3):455-461.
    PMID: 30450561 DOI: 10.1002/elps.201800398
    A new multi-stacking pre-concentration procedure based on field-enhanced sample injection (FESI), field-amplified sample stacking, and transient isotachophoresis was developed and implemented in a compact microchip electrophoresis (MCE) with a double T-junction glass chip, coupled with an on-chip capacitively coupled contactless conductivity detection (C4 D) system. A mixture of the cationic target analyte and the terminating electrolyte (TE) from the two sample reservoirs was injected under FESI conditions within the two sample-loading channels. At the double T-junction, the stacked analyte zones were further concentrated under field-amplified stacking conditions and then subsequently focused by transient-isotachophoresis and separated along the separation channels. The proposed multi-stacking strategy was verified under a Universal Serial Bus (USB) fluorescence microscope employing Rhodamine 6G as the model analyte. This developed approach was subsequently used to monitor the target quinine present in human plasma samples. The total analysis time for quinine was approximately 200 s with a sensitivity enhancement factor of approximately 61 when compared to the typical gated injection. The detection and quantification limits of the developed approach for quinine were 3.0 μg/mL and 10 μg/mL, respectively, with intraday and interday repeatability (%RSDs, n = 5) of 3.6 and 4.4%. Recoveries in spiked human plasma were 98.1-99.8%.
    Matched MeSH terms: Electrophoresis, Microchip/instrumentation*; Electrophoresis, Microchip/methods
  20. Tan HS, Jacoby RP, Ong-Abdullah M, Taylor NL, Liddell S, Chee WW, et al.
    Electrophoresis, 2017 04;38(8):1147-1153.
    PMID: 28198080 DOI: 10.1002/elps.201600506
    Oil palm is one of the most productive oil bearing crops grown in Southeast Asia. Due to the dwindling availability of agricultural land and increasing demand for high yielding oil palm seedlings, clonal propagation is vital to the oil palm industry. Most commonly, leaf explants are used for in vitro micropropagation of oil palm and to optimize this process it is important to unravel the physiological and molecular mechanisms underlying somatic embryo production from leaves. In this study, a proteomic approach was used to determine protein abundance of mature oil palm leaves. To do this, leaf proteins were extracted using TCA/acetone precipitation protocol and separated by 2DE. A total of 191 protein spots were observed on the 2D gels and 67 of the most abundant protein spots that were consistently observed were selected for further analysis with 35 successfully identified using MALDI TOF/TOF MS. The majority of proteins were classified as being involved in photosynthesis, metabolism, cellular biogenesis, stress response, and transport. This study provides the first proteomic assessment of oil palm leaves in this important oil crop and demonstrates the successful identification of selected proteins spots using the Malaysian Palm Oil Board (MPOB) Elaeis guineensis EST and NCBI-protein databases. The MS data have been deposited in the ProteomeXchange Consortium database with the data set identifier PXD001307.
    Matched MeSH terms: Electrophoresis, Gel, Two-Dimensional
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links