Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Lawati AA, Hashmi LA, Aswami HA, Hadhrami AA, Chin KY, Das S, et al.
    PMID: 38299284 DOI: 10.2174/0118715303279298231228074222
    Endocrine-disrupting chemicals (EDCs) are environmental pollutants. Since EDCs are present in various consumer products, contamination of human beings is very common. EDCs have deleterious effects on various systems of the body, especially the endocrine and reproductive systems. EDCs interfere with the synthesis, metabolism, binding, or cellular responses of natural estrogens and alter various pathways. Biological samples such as blood, saliva, milk, placental tissue, and hair are frequently used for biomonitoring and the detection of EDCs. Early detection and intervention may help in preventing congenital anomalies and birth defects. The common methods for determining the presence of EDCs in body fluids include gas chromatography, high-performance liquid chromatography, and mass spectrometry. Understanding the health effects and dangers of EDC is important, given their widespread use. This mini-review aims to summarize the adverse biological effects of several important classes of EDCs and highlights future perspectives for appropriate control.
  2. Egedigwe-Ekeleme CA, Ijeh II, Okafor PN, Eleazu CO, Egedigwe UO
    PMID: 30806328 DOI: 10.2174/1871530319666190222163159
    Bentham Science has decided to withdraw this article from the journal in accordance with BSP Editorial Policies and apologizes to its readers for any inconvenience this may cause.

    BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

  3. Jana S, Gayen S, Gupta BD, Singha S, Mondal J, Kar A, et al.
    PMID: 37691221 DOI: 10.2174/1871530323666230907115818
    BACKGROUND: The medicinal plants of the Cucurbitaceae family, such as Solena heterophylla Lour. fruits, have significant ethnobotanical value and are readily accessible in North East India.

    AIMS: We conducted a study on Solena heterophylla Lour. fruits to evaluate their anti-diabetic activity in vivo, standardize their HPTLC, and profile their metabolites using LC-QTOF-MS. We aimed to explore the molecular mechanism behind their effects on oxidative stress and glycosylated hemoglobin (HbA1c).

    METHODS: Firstly, the ethyl acetate fraction of Solena heterophylla Lour. fruits was standardized using Cucurbitacin B as a standard marker by conducting HPTLC evaluation. Next, we delved into analyzing metabolite profiling. In addition, the standardized fraction was utilized in an experimental study to investigate the molecular mechanism of action in an in vivo high-fat diet and a low dose of streptozotocin-induced diabetic model.

    RESULTS: We have reportedly identified 52 metabolites in the ethyl acetate fraction of Solena heterophylla (EASH). In the in vitro tests, it has been observed that this extract from plants possesses notable inhibitory properties against α-amylase and α-glucosidase. Solena heterophylla fruits with high levels of Cucurbitacin B (2.29% w/w) helped lower FBG levels in animals with EASH treatment. EASH treatment reduced HbA1c levels and normalized liver lipid peroxidation and antioxidant enzyme levels. SGOT, SGPT, and SALP serum enzyme levels also returned to normal.

    CONCLUSION: Based on the current evaluation, it was found that EASH exhibited encouraging hypoglycemic effects in diabetic rats induced by a low dose of STZ and high-fat diet, which warrants further investigation.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links