Displaying publications 21 - 40 of 52 in total

Abstract:
Sort:
  1. Molahid VLM, Kusin FM, Syed Hasan SNM
    Environ Geochem Health, 2023 Jul;45(7):4439-4460.
    PMID: 36811700 DOI: 10.1007/s10653-023-01513-y
    Mining activities have often been associated with the issues of waste generation, while mining is considered a carbon-intensive industry that contributes to the increasing carbon dioxide emission to the atmosphere. This study attempts to evaluate the potential of reusing mining waste as feedstock material for carbon dioxide sequestration through mineral carbonation. Characterization of mining waste was performed for limestone, gold and iron mine waste, which includes physical, mineralogical, chemical and morphological analyses that determine its potential for carbon sequestration. The samples were characterized as having alkaline pH (7.1-8.3) and contain fine particles, which are important to facilitate precipitation of divalent cations. High amount of cations (CaO, MgO and Fe2O3) was found in limestone and iron mine waste, i.e., total of 79.55% and 71.31%, respectively, that are essential for carbonation process. Potential Ca/Mg/Fe silicates, oxides and carbonates have been identified, which was confirmed by the microstructure analysis. The limestone waste composed majorly of CaO (75.83%), which was mainly originated from calcite and akermanite minerals. The iron mine waste consisted of Fe2O3 (56.60%), mainly from magnetite and hematite, and CaO (10.74%) which was derived from anorthite, wollastonite and diopside. The gold mine waste was attributed to a lower cation content (total of 7.71%), associated mainly with mineral illite and chlorite-serpentine. The average capacity for carbon sequestration was between 7.73 and79.55%, which corresponds to 383.41 g, 94.85 g and 4.72 g CO2 that were potentially sequestered per kg of limestone, iron and gold mine waste, respectively. Therefore, it has been learned that the mine waste might be utilized as feedstock for mineral carbonation due to the availability of reactive silicate/oxide/carbonate minerals. Utilization of mine waste would be beneficial in light of waste restoration in most mining sites while tackling the issues of CO2 emission in mitigating the global climate change.
  2. Vasudevan U, Gantayat RR, Chidambaram S, Prasanna MV, Venkatramanan S, Devaraj N, et al.
    Environ Geochem Health, 2021 Feb;43(2):1069-1088.
    PMID: 32940833 DOI: 10.1007/s10653-020-00712-1
    Microbes in groundwater play a key role in determining the drinking water quality of the water. The study aims to interpret the sources of microbes in groundwater and its relationship to geochemistry. The study was carried out by collecting groundwater samples and analyzed to obtain various cations and anions, where HCO3-, Cl- and NO3- found to be higher than permissible limits in few samples. Microbial analysis, like total coliform (TC), total viable counts (TVC), fecal coliforms (FC), Vibrio cholera (V. cholerae) and total Streptococci (T. streptococci) were analyzed, and the observations reveal that most of the samples were found to be above the permissible limits adopted by EU, BIS, WHO and USEPA standards. Correlation analysis shows good correlation between Mg2+-HCO3-, K+-NO3-, TVC- V. cholerae and T. streptococci-FC. Major ions like Mg+, K+, NO3, Ca2+ and PO4 along with TS and FC were identified to control the geochemical and microbial activities in the region. The magnesium hardness in the groundwater is inferred to influence the TVC and V. cholerae. The mixing of effluents from different sources reflected the association of Cl with TC. Population of microbes T. streptococci and FC was mainly associated with Ca and Cl content in groundwater, depicting the role of electron acceptors and donors. The sources of the microbial population were observed with respect to the land use pattern and the spatial distribution of hydrogeochemical factors in the region. The study inferred that highest microbial activity in the observed in the residential areas, cultivated regions and around the landfill sites due to the leaching of sewage water and fertilizers runoff into groundwater. The concentrations of ions and microbes were found to be above the permissible limits of drinking water quality standards. This may lead to the deterioration in the health of particular coastal region.
  3. Thivya C, Chidambaram S, Keesari T, Prasanna MV, Thilagavathi R, Adithya VS, et al.
    Environ Geochem Health, 2016 Apr;38(2):497-509.
    PMID: 26104429 DOI: 10.1007/s10653-015-9735-7
    Uranium is a radioactive element normally present in hexavalent form as U(VI) in solution and elevated levels in drinking water cause health hazards. Representative groundwater samples were collected from different litho-units in this region and were analyzed for total U and major and minor ions. Results indicate that the highest U concentration (113 µg l(-1)) was found in granitic terrains of this region and about 10 % of the samples exceed the permissible limit for drinking water. Among different species of U in aqueous media, carbonate complexes [UO2(CO3)(2)(2-)] are found to be dominant. Groundwater with higher U has higher pCO2 values, indicating weathering by bicarbonate ions resulting in preferential mobilization of U in groundwater. The major minerals uraninite and coffinite were found to be supersaturated and are likely to control the distribution of U in the study area. Nature of U in groundwater, the effects of lithology on hydrochemistry and factors controlling its distribution in hard rock aquifers of Madurai district are highlighted in this paper.
  4. Prathumratana L, Kim R, Kim KW
    Environ Geochem Health, 2020 Mar;42(3):1033-1044.
    PMID: 30206754 DOI: 10.1007/s10653-018-0186-9
    Lead contamination in topsoil of the mining and smelting area of Mitrovica, Kosovo, was investigated for total concentrations and chemical fractions by sequential extraction analysis, mineralogical fractions by X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDX). The study revealed that all samples contained Pb exceeding USEPA standard of 400 mg kg-1. The highest total concentration of Pb (125,000 mg kg-1) was the soil from the former smelter. Sequential extraction results showed that the predominant form of Pb was associated with Fe-Mn oxide-bound fraction which ranged from 45.37 to 71.61% of total concentrations, while carbonate and silicate Pb-binding fractions were dominant when physical measurements (XRD and SEM-EDX) were applied. Application of Pb isotope ratios (206Pb/207Pb and 208Pb/206Pb), measured by inductively coupled plasma mass spectrometry, identified that Pb contamination is originated from similar anthropogenic source. The results reflected that the Pb contamination in the soil of this area is serious. In order to provide proper approaches on remediation and prevention of health impacts to the people in this area, a continuous monitoring and health risk assessment are recommended.
  5. Lee S, Roh Y, Kim KW
    Environ Geochem Health, 2019 Feb;41(1):71-79.
    PMID: 29761243 DOI: 10.1007/s10653-018-0121-0
    Mercuric species, Hg(II), interacts strongly with dissolved organic matter (DOM) through the oxidation, reduction, and complexation that affect the fate, bioavailability, and cycling of mercury, Hg, in aquatic environments. Despite its importance, the reactions between Hg(II) and DOM have rarely been studied in the presence of different concentrations of chloride ions (Cl-) under anoxic conditions. Here, we report that the extent of Hg(II) reduction in the presence of the reduced DOM decreases with increasing Cl- concentrations. The rate constants of Hg(II) reduction ranged from 0.14 to 1.73 h-1 in the presence of Cl- and were lower than the rate constant (2.41 h-1) in the absence of Cl-. Using a thermodynamic model, we showed that stable Hg(II)-chloride complexes were formed in the presence of Cl-. We further examined that H(0) was oxidized to Hg(II) in the presence of the reduced DOM and Cl- under anoxic conditions, indicating that Hg(II) reduction is inhibited by the Hg(0) oxidation. Therefore, the Hg(II) reduction by the reduced DOM can be offset due to the Hg(II)-chloride complexation and Hg(0) oxidation in chloride-rich environments. These processes can significantly influence the speciation of Hg and have an important implication for the behavior of Hg under environmentally relevant concentrations.
  6. Shanmugam P, Parasuraman B, Boonyuen S, Thangavelu P, AlSalhi MS, Zheng ALT, et al.
    Environ Geochem Health, 2024 Feb 17;46(3):92.
    PMID: 38367085 DOI: 10.1007/s10653-024-01871-1
    A facile and cost-effective hydrothermal followed by precipitation method is employed to synthesize visible light-driven ZnS-Ag ternary composites supported on carbon aerogel (CA). Extensive studies were conducted on the structural, morphological, and optical properties, confirming the successful formation of ternary nanocomposites. The obtained results evidently demonstrate the successful loading of ZnS and Ag onto the surface of the CA. High-resolution transmission electron microscopy analysis revealed that ZnS and Ag nanoparticles (AgNPs) were uniformly distributed on the surface of the CA with an average diameter of 18 nm. The biomass-derived CA, containing a hierarchical porous nano-architecture and an abundant number of -NH2 functional groups on the surface, can greatly prevent the agglomeration, stability and reduce particle size. Brunauer-Emmett-Teller analysis results indicated specific surface areas of 4.62 m2 g-1 for the CA, 48.50 m2 g-1 for the CA/ZnS composite, and 62.62 m2 g-1 for the CA/ZnS-Ag composite. These values demonstrate an increase in surface area upon the incorporation of ZnS and Ag into the CA matrix. Under visible light irradiation, the synthesized CA/ZnS-Ag composites displayed remarkably improved photodegradation efficiency of methylene blue (MB). Among the tested samples, the CA/ZnS-Ag composites exhibited the highest percentage of photodegradation efficiency, surpassing ZnS, CA, and CA/ZnS. The obtained percentages of degradation efficiency for CA, ZnS, CA/ZnS, and CA/ZnS-Ag composites were determined as 26.60%, 52.12%, 68.39%, and 98.64%, respectively. These results highlight the superior photocatalytic performance of the CA/ZnS-Ag composites in the degradation of MB under visible light conditions. The superior efficiency of the CA/ZnS-Ag composite can be attributed to multiple factors, including its elevated specific surface area, inhibition of electron-hole pair recombination, and enhanced photon absorption within the visible light spectrum. The CA/ZnS-Ag composites displayed consistent efficiency over multiple cycles, confirming their stable performance, reusability, and enduring durability, thereby showcasing the robust nature of this composite material.
  7. Shamsuddin AS, Syed Ismail SN, Othman NMI, Zakaria NH, Abd Manan TS, Ibrahim MA, et al.
    Environ Geochem Health, 2023 Nov;45(11):7741-7757.
    PMID: 37428425 DOI: 10.1007/s10653-023-01671-z
    Excessive nitrate intake via ingestion pathway and dermal absorption exposures has adverse health impacts on human health. This study evaluated groundwater (GW) nitrate concentrations and health risks which focused on ingestion and dermal exposures to residents in Bachok District, Kelantan, Malaysia. Three hundred (300) samples of private wells were collected and it is found that the nitrate concentrations ranging between 0.11 and 64.01 mg/L NO3-N with a mean value of 10.45 ± 12.67 mg/L NO3-N. The possible health hazards of nitrate by ingestion and dermal contact were assessed using USEPA human health risk assessment model for adult males and females. It is observed that the mean Hazard Quotient (HQ) values of adult males and females were 0.305 ± 0.364 and 0.261 ± 0.330, respectively. About 7.3% (n = 10) and 4.9% (n = 8) of adult males and females had HQ values more than 1, respectively. It was also observed that the mean of HQderm was lesser than HQoral for males and females. The spatial distribution of HQ by interpolation method showed high nitrate concentrations (> 10 mg/L NO3-N) were distributed from the centre to the southern part of the study location, which identified as an agricultural area, indicating the used of nitrogenous fertilizers as the main source of GW nitrate contamination in this area. The findings of this study are valuable for establishing private well water protection measures to stop further deterioration of GW quality caused by nitrate.
  8. Zarcinas BA, Ishak CF, McLaughlin MJ, Cozens G
    Environ Geochem Health, 2004 Dec;26(4):343-57.
    PMID: 15719158
    In a reconnaisance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R2 = 0.195, p < 0.001), for Ni in corn (R2 = 0.649, p < 0.005), for Cu in chili (R2 = 0.344, p < 0.010) and for Zn in chili (R2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).
  9. Baki MA, Shojib MFH, Sehrin S, Chakraborty S, Choudhury TR, Bristy MS, et al.
    Environ Geochem Health, 2020 Feb;42(2):531-543.
    PMID: 31376046 DOI: 10.1007/s10653-019-00386-4
    This study aimed to assess the effects of major ecotoxic heavy metals accumulated in the Buriganga and Turag River systems on the liver, kidney, intestine, and muscle of common edible fish species Puntius ticto, Heteropneustes fossilis, and Channa punctatus and determine the associated health risks. K was the predominant and reported as a major element. A large concentration of Zn was detected in diverse organs of the three edible fishes compared with other metals. Overall, trace metal analysis indicated that all organs (especially the liver and kidney) were under extreme threat because the maximum permissible limit set by different international health organizations was exceeded. The target hazard quotient and target cancer risk due to the trace metal content were the largest for P. ticto. Thus, excessive intake of P. ticto from the rivers Buriganga and Turag could result in chronic risks associated with long-term exposure to contaminants. Histopathological investigations revealed the first detectable indicators of infection and findings of long-term injury in cells, tissues, and organs. Histopathological changes in various tissue structures of fish functioned as key pointers of connection to pollutants, and definite infections and lesion types were established based on biotic pointers of toxic/carcinogenic effects. The analysis of histopathological alterations is a controlling integrative device used to assess pollutants in the environment.
  10. Mohammed AU, Aris AZ, Ramli MF, Isa NM, Arabi AS, Jabbo JN
    Environ Geochem Health, 2023 Jun;45(6):3891-3906.
    PMID: 36609946 DOI: 10.1007/s10653-022-01468-6
    Multiple interactions of geogenic and anthropogenic activities can trigger groundwater pollution in the tropical savanna watershed. These interactions and resultant contamination have been studied using applied geochemical modeling, conventional hydrochemical plots, and multivariate geochemometric methods, and the results are presented in this paper. The high alkalinity values recorded for the studied groundwater samples might emanate from the leaching of carbonate soil derived from limestone coupled with low rainfall and high temperature in the area. The principal component analysis (PCA) unveils three components with an eigenvalue > 1 and a total dataset variance of 67.37%; this implies that the temporary hardness of the groundwater and water-rock interaction with evaporite minerals (gypsum, halite, calcite, and trona) is the dominant factor affecting groundwater geochemistry. Likewise, the PCA revealed anthropogenic contamination by discharging [Formula: see text] [Formula: see text][Formula: see text] and [Formula: see text] from agricultural activities and probable sewage leakages. Hierarchical cluster analysis (HCA) also revealed three clusters; cluster I reflects the dissolution of gypsum and halite with a high elevated load of [Formula: see text] released by anthropogenic activities. However, cluster II exhibited high [Formula: see text] and [Formula: see text] loading in the groundwater from weathering of bicarbonate and sylvite minerals. Sulfate ([Formula: see text]) dominated cluster III mineralogy resulting from weathering of anhydrite. The three clusters in the Maiganga watershed indicated anhydrite, gypsum, and halite undersaturation. These results suggest that combined anthropogenic and natural processes in the study area are linked with saturation indexes that regulate the modification of groundwater quality.
  11. Akinyemi SA, Gitari WM, Thobakgale R, Petrik LF, Nyakuma BB, Hower JC, et al.
    Environ Geochem Health, 2020 Sep;42(9):2771-2788.
    PMID: 31900823 DOI: 10.1007/s10653-019-00511-3
    The chemical reactions of dry-disposed ash dump, ingressed oxygen, carbon dioxide, and infiltrating rainwater affect mineralogical transformation, redistribution, and migration of chemical species. Composite samples of weathered coal fly ash taken at various depths and fresh coal fly ash were examined using organic petrographic, X-ray diffraction, X-ray fluorescence techniques, and successive extraction procedures. Results obtained show relative enrichment of glass, Al-Fe-oxides, calcite, and tridymite in the weathered CFA, but the fresh CFA is enriched in mullite, inertinite, maghemite, and ettringite. The enrichment of the weathered CFA in amorphous glass suggests higher reactivity when compared to fresh CFA. The evident depletion of soluble oxides in the weathered CFA is attributed to flushing of the soluble salts by percolating rainwater. Comparative enrichment of examined elements in water-soluble, exchangeable, reducible, and residual fractions of the weathered CFA is partly due to the slow release of adsorbed chemical species from the alumina-silicate matrix and diffusion from the deeper sections of the particles of coal fly ash. Sodium and potassium show enrichment in the oxidisable fraction of fresh CFA. The estimated mobility factor indicates mobility for Ca, Mg, Na, Se, Mo, and Sb and K, Sr, V, Cu, Cr, Se, and B in fresh and weathered CFAs, respectively.
  12. Kumar A, Kumari S, Mustapha KA, Chakladar S, Chakravarty S
    Environ Geochem Health, 2023 Oct;45(10):6967-6983.
    PMID: 36626075 DOI: 10.1007/s10653-023-01475-1
    The borehole coal samples of Dhulia North Block from the Rajmahal Basin, Eastern India, were systematically analyzed based on the chemical composition and concentration of major and trace elements (including rare earth elements, REEs) to assess the distribution of REEs and their environmental implications with utilization potential. The Dhulia North Block coals are characterized by the predominant major oxides of SiO2, Al2O3, and Fe2O3, accounting for 94% of the total ash composition, indicating the presence of quartz, clay-rich minerals, and pyrite. Compared with the average world coal ash, the total REE content in the analyzed samples ranged from 341.0 to 810.4 ppm, which is substantially higher. Hot humid climate conditions with intermediate igneous source rocks of the basin were demonstrated by the major oxide ratios (Al2O3/TiO2 < 20) and plots of TiO2 with Al2O3 and Zr. The redox-sensitive elements such as V, Ni, Cr, and Co found in the Dhulia North Block coal indicate that an oxic sedimentary environment existed in the basin when coal was formed. The low sulfur content (1% in most samples) indicates freshwater conditions in the basin at the time of organic matter deposition. The outlook coefficient (Coutl) varies between 0.7 and 1.6, indicating that the Dhulia North Block coals are a prospective source of REEs. The Dhulia North Block coals are characterized by low H/C and O/C atomic ratios ranging from 0.56 to 0.90 and 0.10 to 0.22, respectively, and contain type-III kerogens, indicating gas-prone source rock. Further, the basic-to-acid oxide ratio suggested that Dhulia North Block coals were suitable for utilization during combustion processes.
  13. Mohd Isha NS, Mohd Kusin F, Ahmad Kamal NM, Syed Hasan SNM, Molahid VLM
    Environ Geochem Health, 2021 May;43(5):2065-2080.
    PMID: 33392897 DOI: 10.1007/s10653-020-00784-z
    This paper attempts to evaluate the mineralogical and chemical composition of sedimentary limestone mine waste alongside its mineral carbonation potential. The limestone mine wastes were recovered as the waste materials after mining and crushing processes and were analyzed for mineral, major and trace metal elements. The major mineral composition discovered was calcite (CaCO3) and dolomite [CaMg(CO3)2], alongside other minerals such as bustamite [(Ca,Mn)SiO3] and akermanite (Ca2MgSi2O7). Calcium oxide constituted the greatest composition of major oxide components of between 72 and 82%. The presence of CaO facilitated the transformation of carbon dioxide into carbonate form, suggesting potential mineral carbonation of the mine waste material. Geochemical assessment indicated that mean metal(loid) concentrations were found in the order of Al > Fe > Sr > Pb > Mn > Zn > As > Cd > Cu > Ni > Cr > Co in which Cd, Pb and As exceeded some regulatory guideline values. Ecological risk assessment demonstrated that the mine wastes were majorly influenced by Cd as being classified having moderate risk. Geochemical indices depicted that Cd was moderately accumulated and highly enriched in some of the mine waste deposited areas. In conclusion, the limestone mine waste material has the potential for sequestering CO2; however, the presence of some trace metals could be another important aspect that needs to be considered. Therefore, it has been shown that limestone mine waste can be regarded as a valuable feedstock for mineral carbonation process. Despite this, the presence of metal(loid) elements should be of another concern to minimize potential ecological implication due to recovery of this waste material.
  14. Haris H, Looi LJ, Aris AZ, Mokhtar NF, Ayob NAA, Yusoff FM, et al.
    Environ Geochem Health, 2017 Dec;39(6):1259-1271.
    PMID: 28484873 DOI: 10.1007/s10653-017-9971-0
    The aim of the present study was to appraise the levels of heavy metal contamination (Zn and Pb) in sediment of the Langat River (Selangor, Malaysia). Samples were collected randomly from 15 sampling stations located along the Langat River. The parameters measured were pH, redox potential, salinity, electrical conductivity, loss of ignition, cation exchanges capacity (Na, Mg, Ca, K), and metal ions (Zn and Pb). The geo-accumulation index (I geo) and contamination factor (C f) were applied to determine and classify the magnitude of heavy metal pollution in this urban river sediment. Results revealed that the I geo of Pb indicated unpolluted to moderately polluted sediment at most of the sampling stations, whereas Zn was considered to be within background concentration. The I geo results were refined by the C f values, which showed Pb with very high C f at 12 stations. Zinc, on the other hand, had low to moderate C f values. These findings indicated that the sediment of the Langat River is severely polluted with Pb. The Zn concentration at most sampling points was well below most sediment quality guidelines. However, 40% of the sampling points were found to have a Pb concentration higher than the consensus-based probable effect concentration of 128 mg/kg (concentrations above this value are likely to cause harmful effects). This result not only highlights the severity of Pb pollution in the sediment of the Langat River, but also the potential risk it poses to the environment.
  15. Nasir HM, Aris AZ, Abdullah LC, Ismail I
    PMID: 34129136 DOI: 10.1007/s10653-021-00999-8
    This study aims to formulate and fabricate the optimum condition of modified kenaf core (MKC) for the removal of targeted endocrine-disrupting compounds in a batch adsorption system. Kenaf core was chemically modified using phosphoric acid as an activating agent, which involved the pyrolysis step. Results indicated a significant difference (p  T1KC > T3KC, whereas that in the binary mixture system leads to T2KC > T1KC > T3KC and T1KC > T2KC > T3KC for E2 and EE2 adsorption, respectively, through hydrogen bonding and the π-π interaction mechanism. Thus, the findings revealed T2KC at a moderate level of acid concentration (0.5 M H3PO4) to be a potential biochar, with an environmentally safe and sound profile for opposing emerging pollutant issues as well as for the attainment of sustainable development goals.
  16. Kadhum SA, Ishak MY, Zulkifli SZ
    Environ Geochem Health, 2017 Oct;39(5):1145-1158.
    PMID: 27848092 DOI: 10.1007/s10653-016-9883-4
    This study applied the use of sequential extraction technique and simple bioaccessibility extraction test to quantify the bioavailable fractions and the human bioaccessible concentration of metals collected from nine stations in surface sediment of the Langat River. The concentrations of total and bioaccessible metals from different stations were in the range of 0.49-1.04, 0.10-0.32 μg g-1 for T-Cd, Bio-Cd, respectively, and 12.9-128.03, 2.06-8.53 μg kg-1 for T-Hg, Bio-Hg, respectively. The results revealed highest R-Bio-Cd in Banting station (55.3 %), while the highest R-Bio-Hg was in Kajang station (49.61 %). The chemical speciation of Cd in most sampling stations was in the order of oxidisable-organic > residual > exchangeable > acid-reducible, while speciation of Hg was in the order of exchangeable > residual > oxidisable-organic > acid-reducible. The correlation matric of mean content showed that the TOM, particle size and Mg++ in polluted surface sediments was highly correlated with total mercury. The PCA showed that the main factors influencing the bioaccessibility of Hg in surface sediments were the sediment TOM, F1 (EFLE) and F3 (oxidation-organic), while the factor influencing the bioaccessibility of Cd was the F3 (oxidation-organic) and T-Cd.
  17. Alkhadher SAA, Sidek LM, Zakaria MP, A Al-Garadi M, Suratman S
    Environ Geochem Health, 2024 Mar 15;46(4):140.
    PMID: 38488953 DOI: 10.1007/s10653-024-01916-5
    Organic pollution continues to be an important worldwide obstacle for tackling health and environmental concerns that require ongoing and prompt response. To identify the LAB content levels as molecular indicators for sewage pollution, surface sediments had obtained from the South region of Malaysia. The origins of the LABs were identified using gas chromatography-mass spectrometry (GC-MS). ANOVA and a Pearson correlation coefficient at p 
  18. van der Ent A, Edraki M
    Environ Geochem Health, 2018 Feb;40(1):189-207.
    PMID: 27848090 DOI: 10.1007/s10653-016-9892-3
    The Mamut Copper Mine (MCM) located in Sabah (Malaysia) on Borneo Island was the only Cu-Au mine that operated in the country. During its operation (1975-1999), the mine produced 2.47 Mt of concentrate containing approximately 600,000 t of Cu, 45 t of Au and 294 t of Ag, and generated about 250 Mt of overburden and waste rocks and over 150 Mt of tailings, which were deposited at the 397 ha Lohan tailings storage facility, 15.8 km from the mine and 980 m lower in altitude. The MCM site presents challenges for environmental rehabilitation due to the presence of large volumes of sulphidic minerals wastes, the very high rainfall and the large volume of polluted mine pit water. This indicates that rehabilitation and treatment is costly, as for example, exceedingly large quantities of lime are needed for neutralisation of the acidic mine pit discharge. The MCM site has several unusual geochemical features on account of the concomitant occurrence of acid-forming sulphide porphyry rocks and alkaline serpentinite minerals, and unique biological features because of the very high plant diversity in its immediate surroundings. The site hence provides a valuable opportunity for researching natural acid neutralisation processes and mine rehabilitation in tropical areas. Today, the MCM site is surrounded by protected nature reserves (Kinabalu Park, a World Heritage Site, and Bukit Hampuan, a Class I Forest Reserve), and the environmental legacy prevents de-gazetting and inclusion in these protected area in the foreseeable future. This article presents a preliminary geochemical investigation of waste rocks, sediments, secondary precipitates, surface water chemistry and foliar elemental uptake in ferns, and discusses these results in light of their environmental significance for rehabilitation.
  19. Pongpiachan S
    PMID: 34287730 DOI: 10.1007/s10653-021-01039-1
    Over the past few decades, several techniques have been applied to identify the geographical origins of rice products. In this study, the chemical characterization of polycyclic aromatic hydrocarbons (PAHs) was carefully conducted by analysing PAHs in rice samples collected from private sector planting areas located in Bali and Yogyakarta, Indonesia (i.e. ID; n = 20), west sides of Malaysia (i.e. MY; n = 20), Mandalay, Legend, Myingyan, Myanmar (i.e. MM; n = 20), northern parts of Lao PDR (i.e. LA; n = 20), central parts of Cambodia (i.e. KH; n = 20), northern parts of Vietnam (i.e. VN; n = 20), and Thailand (i.e. TH; n = 22). Percentage contributions show the exceedingly high abundance of 5-6 ring PAH congeners in rice samples collected from Indonesia, Malaysia, Thailand, Myanmar, Cambodia and Vietnam. Lao PDR rice samples were overwhelmed by 4-ring PAH congeners with the percentage contribution of 46% followed by 5-6 ring PAHs (33%) and 3-ring PAHs (21%). In addition, hierarchical cluster analysis and principal component analysis can successfully categorize some rice samples based on its geographical origins.
  20. Vasu D, Navaneetha Pandiyaraj K, Padmanabhan PVA, Pichumani M, Deshmukh RR, Jaganathan SK
    Environ Geochem Health, 2021 Feb;43(2):649-662.
    PMID: 31679080 DOI: 10.1007/s10653-019-00446-9
    One of the major environmental issues of textile industries is the discharge of large quantities of textile effluents, which are source of contamination of water bodies on surface of earth and quality of groundwater. The effluents are toxic, non-biodegradable, carcinogenic and prodigious threats to human and aquatic creatures. Since textile effluents can be treated efficiently and effectively by various advanced oxidation processes (AOPs). Among the various AOPs, cold atmospheric pressure plasma is a promising method among many prominent techniques available to treat the effluents. In this paper, we report about the degradation of simulated effluent, namely Direct Orange-S (DO-S) aqueous solution, using nonthermal atmospheric pressure plasma jet. The plasma treatment of DO-S aqueous solution was carried out as a function of various operating parameters such as potential and treatment time. The change in properties of treated DO-S dye was investigated by means of various analytical techniques such as high-performance liquid chromatography, UV-visible (UV-Vis) spectroscopy and determination of total organic content (TOC). The reactive species present in the samples were identified using optical emission spectrometry (OES). OES results confirmed that the formation of reactive oxygen and nitrogen species during the plasma treatment in the liquid surface was responsible for dye oxidation and degradation. Degradation efficiency, as monitored by color removal efficiency, of 96% could be achieved after 1 h of treatment. Concurrently, the TOC values were found to decrease with plasma treatment, implying that the plasma treatment process enhanced the non-toxicity nature of DO-S aqueous solution. Toxicity of the untreated and plasma-treated dye solution samples was studied using Escherichia coli (E. coli) and Staphylococcus (S. aureus) organisms, which demonstrated that the plasma-treated dye solution was non-toxic in nature compared with untreated one.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links