Displaying publications 21 - 40 of 1002 in total

Abstract:
Sort:
  1. Lee SC, Ngui R, Tan TK, Roslan MA, Ithoi I, Lim YA
    Environ Sci Pollut Res Int, 2014 Jan;21(1):445-53.
    PMID: 23794081 DOI: 10.1007/s11356-013-1925-1
    An aquatic biomonitoring of Giardia cysts and Cryptosporidium oocysts in river water corresponding to five villages situated in three states in peninsular Malaysia was determined. There were 51.3% (20/39) and 23.1% (9/39) samples positive for Giardia and Cryptosporidium (oo)cysts, respectively. Overall mean concentration between villages for Giardia cysts ranged from 0.10 to 25.80 cysts/l whilst Cryptosporidium oocysts ranged from 0.10 to 0.90 oocysts/l. Detailed results of the river samples from five villages indicated that Kuala Pangsun 100% (9/9), Kemensah 77.8% (7/9), Pos Piah 33.3% (3/9) and Paya Lebar 33.3% (1/3) were contaminated with Giardia cysts whilst Cryptosporidium (oo)cysts were only detected in Kemensah (100 %; 9/9) and Kuala Pangsun (66.6%; 6/9). However, the water samples from Bentong were all negative for these waterborne parasites. Samples were collected from lower point, midpoint and upper point. Midpoint refers to the section of the river where the studied communities are highly populated. Meanwhile, the position of the lower point is at least 2 km southward of the midpoint and upper point is at least 2 km northward of the midpoint. The highest mean concentration for (oo)cysts was found at the lower points [3.15 ± 6.09 (oo)cysts/l], followed by midpoints [0.66 ± 1.10 (oo)cysts/l] and upper points [0.66 ± 0.92 (oo)cysts/l]. The mean concentration of Giardia cysts was highest at Kuala Pangsun (i.e. 5.97 ± 7.0 cysts/l), followed by Kemensah (0.83 ± 0.81 cysts/l), Pos Piah (0.20 ± 0.35 cysts/l) and Paya Lebar (0.10 ± 0.19 cysts/l). On the other hand, the mean concentration of Cryptosporidium oocysts was higher at Kemensah (0.31 ± 0.19 cysts/l) compared to Kuala Pangsun (0.03 ± 0.03cysts/l). All the physical and chemical parameters did not show significant correlation with both protozoa. In future, viability status and molecular characterisation of Giardia and Cryptosporidium should be applied to identify species and genotypes/subgenotypes for better understanding of the epidemiology of these waterborne parasites.
  2. Venny, Gan S, Ng HK
    Environ Sci Pollut Res Int, 2014 Feb;21(4):2888-97.
    PMID: 24151025 DOI: 10.1007/s11356-013-2207-7
    Extensive contamination of soils by highly recalcitrant contaminants such as polycyclic aromatic hydrocarbons (PAHs) is an environmental problem arising from rapid industrialisation. This work focusses on the remediation of soil contaminated with 3- and 4-aromatic ring PAHs (phenanthrene (PHE) and fluoranthene (FLUT)) through catalysed hydrogen peroxide propagation (CHP). In the present work, the operating parameters of the CHP treatment in packed soil column was optimised with central composite design (H2O2/soil 0.081, Fe(3+)/soil 0.024, sodium pyrophosphate (SP)/soil 0.024, pH of SP solution 7.73). The effect of contaminant aging on PAH removals was also investigated. Remarkable oxidative PAH removals were observed for the short aging and extended aging period (up to 86.73 and 70.61 % for PHE and FLUT, respectively). The impacts of CHP on soil biological, chemical and physical properties were studied for both spiked and aged soils. Overall, the soil functionality analyses after the proposed operating condition demonstrated that the values for soil respiration, electrical conductivity, pH and iron precipitation fell within acceptable limits, indicating the compatibility of the CHP process with land restoration.
  3. Najah A, El-Shafie A, Karim OA, El-Shafie AH
    Environ Sci Pollut Res Int, 2014 Feb;21(3):1658-1670.
    PMID: 23949111 DOI: 10.1007/s11356-013-2048-4
    We discuss the accuracy and performance of the adaptive neuro-fuzzy inference system (ANFIS) in training and prediction of dissolved oxygen (DO) concentrations. The model was used to analyze historical data generated through continuous monitoring of water quality parameters at several stations on the Johor River to predict DO concentrations. Four water quality parameters were selected for ANFIS modeling, including temperature, pH, nitrate (NO3) concentration, and ammoniacal nitrogen concentration (NH3-NL). Sensitivity analysis was performed to evaluate the effects of the input parameters. The inputs with the greatest effect were those related to oxygen content (NO3) or oxygen demand (NH3-NL). Temperature was the parameter with the least effect, whereas pH provided the lowest contribution to the proposed model. To evaluate the performance of the model, three statistical indices were used: the coefficient of determination (R (2)), the mean absolute prediction error, and the correlation coefficient. The performance of the ANFIS model was compared with an artificial neural network model. The ANFIS model was capable of providing greater accuracy, particularly in the case of extreme events.
  4. Neoh CH, Lam CY, Lim CK, Yahya A, Ibrahim Z
    Environ Sci Pollut Res Int, 2014 Mar;21(6):4397-408.
    PMID: 24327114 DOI: 10.1007/s11356-013-2350-1
    Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds.
  5. Bay HH, Lim CK, Kee TC, Ware I, Chan GF, Shahir S, et al.
    Environ Sci Pollut Res Int, 2014 Mar;21(5):3891-906.
    PMID: 24293297 DOI: 10.1007/s11356-013-2331-4
    This study focuses on the biodegradation of recalcitrant, coloured compounds resulting from auto-oxidation of Acid Orange 7 (AO7) in a sequential facultative anaerobic-aerobic treatment system. A novel mixed bacterial culture, BAC-ZS, consisting of Brevibacillus panacihumi strain ZB1, Lysinibacillus fusiformis strain ZB2, and Enterococcus faecalis strain ZL bacteria were isolated from environmental samples. The acclimatisation of the mixed culture was carried out in an AO7 decolourised solution. The acclimatised mixed culture showed 98 % decolourisation within 2 h of facultative anaerobic treatment using yeast extract and glucose as co-substrate. Subsequent aerobic post treatment caused auto-oxidation reaction forming dark coloured compounds that reduced the percentage decolourisation to 73 %. Interestingly, further agitations of the mixed culture in the solution over a period of 48 h significantly decolourise the coloured compounds and increased the decolourisation percentage to 90 %. Analyses of the degradation compounds using UV-visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC) showed complete degradation of recalcitrant AO7 by the novel BAC-ZS. Phytotoxicity tests using Cucumis sativus confirmed the dye solution after post aerobic treatment were less toxic compared to the parent dye. The quantitative real-time PCR revealed that E. faecalis strain ZL was the dominant strain in the acclimatised mix culture.
  6. Mustaffa NI, Latif MT, Ali MM, Khan MF
    Environ Sci Pollut Res Int, 2014 May;21(10):6590-602.
    PMID: 24532245 DOI: 10.1007/s11356-014-2562-z
    This study aims to determine the source apportionment of surfactants in marine aerosols at two selected stations along the Malacca Straits. The aerosol samples were collected using a high volume sampler equipped with an impactor to separate coarse- and fine-mode aerosols. The concentrations of surfactants, as methylene blue active substance and disulphine blue active substance, were analysed using colorimetric method. Ion chromatography was employed to determine the ionic compositions. Principal component analysis combined with multiple linear regression was used to identify and quantify the sources of atmospheric surfactants. The results showed that the surfactants in tropical coastal environments are actively generated from natural and anthropogenic origins. Sea spray (generated from sea-surface microlayers) was found to be a major contributor to surfactants in both aerosol sizes. Meanwhile, the anthropogenic sources (motor vehicles/biomass burning) were predominant contributors to atmospheric surfactants in fine-mode aerosols.
  7. Tan KC, Lim HS, Mat Jafri MZ
    Environ Sci Pollut Res Int, 2014 Jun;21(12):7567-77.
    PMID: 24599658 DOI: 10.1007/s11356-014-2697-y
    This study aimed to predict monthly columnar ozone (O3) in Peninsular Malaysia by using data on the concentration of environmental pollutants. Data (2003-2008) on five atmospheric pollutant gases (CO2, O3, CH4, NO2, and H2O vapor) retrieved from the satellite Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) were employed to develop a model that predicts columnar ozone through multiple linear regression. In the entire period, the pollutants were highly correlated (R = 0.811 for the southwest monsoon, R = 0.803 for the northeast monsoon) with predicted columnar ozone. The results of the validation of columnar ozone with column ozone from SCIAMACHY showed a high correlation coefficient (R = 0.752-0.802), indicating the model's accuracy and efficiency. Statistical analysis was utilized to determine the effects of each atmospheric pollutant on columnar ozone. A model that can retrieve columnar ozone in Peninsular Malaysia was developed to provide air quality information. These results are encouraging and accurate and can be used in early warning of the population to comply with air quality standards.
  8. Rafindadi AA, Yusof Z, Zaman K, Kyophilavong P, Akhmat G
    Environ Sci Pollut Res Int, 2014 Oct;21(19):11395-400.
    PMID: 24898296 DOI: 10.1007/s11356-014-3095-1
    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.
  9. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Aris AZ
    Environ Sci Pollut Res Int, 2014;21(11):7047-64.
    PMID: 24532282 DOI: 10.1007/s11356-014-2598-0
    In this study, geophysics, geochemistry, and geostatistical techniques were integrated to assess seawater intrusion in Kapas Island due to its geological complexity and multiple contamination sources. Five resistivity profiles were measured using an electric resistivity technique. The results reveal very low resistivity <1 Ωm, suggesting either marine clay deposit or seawater intrusion or both along the majority of the resistivity images. As a result, geochemistry was further employed to verify the resistivity evidence. The Chadha and Stiff diagrams classify the island groundwater into Ca-HCO3, Ca-Na-HCO3, Na-HCO3, and Na-Cl water types, with Ca-HCO3 as the dominant. The Mg(2+)/Mg(2+)+Ca(2+), HCO3 (-)/anion, Cl(-)/HCO3 (-), Na(+)/Cl(-), and SO4 (2-)/Cl(-) ratios show that some sampling sites are affected by seawater intrusion; these sampling sites fall within the same areas that show low-resistivity values. The resulting ratios and resistivity values were then used in the geographical information system (GIS) environment to create the geostatistical map of individual indicators. These maps were then overlaid to create the final map showing seawater-affected areas. The final map successfully delineates the area that is actually undergoing seawater intrusion. The proposed technique is not area specific, and hence, it can work in any place with similar completed characteristics or under the influence of multiple contaminants so as to distinguish the area that is truly affected by any targeted pollutants from the rest. This information would provide managers and policy makers with the knowledge of the current situation and will serve as a guide and standard in water research for sustainable management plan.
  10. Ashrafi M, Mohamad S, Yusoff I, Shahul Hamid F
    Environ Sci Pollut Res Int, 2015 Jan;22(1):223-30.
    PMID: 25060308 DOI: 10.1007/s11356-014-3299-4
    Heavy-metal-contaminated soil is one of the major environmental pollution issues all over the world. In this study, two low-cost amendments, inorganic eggshell and organic banana stem, were applied to slightly alkaline soil for the purpose of in situ immobilization of Pb, Cd, and Zn. The artificially metal-contaminated soil was treated with 5% eggshell or 10% banana stem. To simulate the rainfall conditions, a metal leaching experiment for a period of 12 weeks was designed, and the total concentrations of the metals in the leachates were determined every 2 weeks. The results from the metal leaching analysis revealed that eggshell amendment generally reduced the concentrations of Pb, Cd, and Zn in the leachates, whereas banana stem amendment was effective only on the reduction of Cd concentration in the leachates. A sequential extraction analysis was carried out at the end of the experiment to find out the speciation of the heavy metals in the amended soils. Eggshell amendment notably decreased mobility of Pb, Cd, and Zn in the soil by transforming their readily available forms to less accessible fractions. Banana stem amendment also reduced exchangeable form of Cd and increased its residual form in the soil.
  11. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Aris AZ, Tanko AI, et al.
    Environ Sci Pollut Res Int, 2015 Jan;22(2):1512-33.
    PMID: 25163562 DOI: 10.1007/s11356-014-3444-0
    In this work, the DRASTIC and GALDIT models were employed to determine the groundwater vulnerability to contamination from anthropogenic activities and seawater intrusion in Kapas Island. In addition, the work also utilized sensitivity analysis to evaluate the influence of each individual parameter used in developing the final models. Based on these effects and variation indices of the said parameters, new effective weights were determined and were used to create modified DRASTIC and GALDIT models. The final DRASTIC model classified the island into five vulnerability classes: no risk (110-140), low (140-160), moderate (160-180), high (180-200), and very high (>200), covering 4, 26, 59, 4, and 7 % of the island, respectively. Likewise, for seawater intrusion, the modified GALDIT model delineates the island into four vulnerability classes: very low (<90), low (90-110), moderate (110-130), and high (>130) covering 39, 33, 18, and 9 % of the island, respectively. Both models show that the areas that are likely to be affected by anthropogenic pollution and seawater intrusion are within the alluvial deposit at the western part of the island. Pearson correlation was used to verify the reliability of the two models in predicting their respective contaminants. The correlation matrix showed a good relationship between DRASTIC model and nitrate (r = 0.58). In a similar development, the correlation also reveals a very strong negative relationship between GALDIT model and seawater contaminant indicator (resistivity Ωm) values (r = -0.86) suggesting that the model predicts more than 86 % of seawater intrusion. In order to facilitate management strategy, suitable areas for artificial recharge were identified through modeling. The result suggested some areas within the alluvial deposit at the western part of the island as suitable for artificial recharge. This work can serve as a guide for a full vulnerability assessment to anthropogenic pollution and seawater intrusion in small islands and will help policy maker and manager with understanding needed to ensure sustainability of the island's aquifer.
  12. Yap CL, Gan S, Ng HK
    Environ Sci Pollut Res Int, 2015 Jan;22(1):329-42.
    PMID: 25065478 DOI: 10.1007/s11356-014-3199-7
    This study focuses on the feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate (EL)-based Fenton treatment via a combination of parametric and kinetic studies. An optimised operating condition was observed at 66.7 M H2O2 with H2O2/Fe(2+) of 40:1 for low soil organic carbon (SOC) content and mildly acidic soil (pH 6.2), and 10:1 for high SOC and very acidic soil (pH 4.4) with no soil pH adjustment. The desorption kinetic was only mildly shifted from single equilibrium to dual equilibrium of the first-order kinetic model upon ageing. Pretreatment with EL fc = 0.60 greatly reduced the mass transfer coefficient especially for the slow desorbed fraction (kslow) of high molecular weight (HMW) PAHs, largely contributed by the concentration gradient created by EL-enhanced solubility. As the major desorption obstacle was almost fully overcome by the pretreatment, the pseudo-first-order kinetic reaction rate constant of PAHs degradation of aged soils was statistically discernible from that of freshly contaminated soils but slightly reduced in high SOC and high acidity soil. Stabilisation of H2O2 by EL addition in combination with reduced Fe(2+) catalyst were able to slow the decomposition rate of H2O2 even at higher soil pH.
  13. Kamari A, Pulford ID, Hargreaves JS
    Environ Sci Pollut Res Int, 2015 Feb;22(3):1919-30.
    PMID: 25263414 DOI: 10.1007/s11356-014-3600-6
    The microbial breakdown of chitosan, a fishery waste-based material, and its derivative cross-linked chitosans, in both non-contaminated and contaminated conditions was investigated in a laboratory incubation study. Biodegradation of chitosan and cross-linked chitosans was affected by the presence of heavy metals. Zn was more pronounced in inhibiting microbial activity than Cu and Pb. It was estimated that a longer period is required to complete the breakdown of the cross-linked chitosans (up to approximately 100 years) than unmodified chitosan (up to approximately 10 years). The influence of biodegradation on the bioavailable fraction of heavy metals was studied concurrently with the biodegradation trial. It was found that the binding behaviour of chitosan for heavy metals was not affected by the biodegradation process.
  14. Udechukwu BE, Ismail A, Zulkifli SZ, Omar H
    Environ Sci Pollut Res Int, 2015 Mar;22(6):4242-55.
    PMID: 25292304 DOI: 10.1007/s11356-014-3663-4
    Sungai Puloh mangrove estuary supports a large diversity of macrobenthic organisms and provides social benefits to the local community. Recently, it became a major recipient of heavy metals originating from industries in the hinterland as a result of industrialization and urbanization. This study was conducted to evaluate mobility and pollution status of heavy metals (Cd, Cu, Ni, Pb, Zn, and Fe) in intertidal surface sediments of this area. Surface sediment samples were collected based on four different anthropogenic sources. Metals concentrations were analyzed using an atomic absorption spectrophotometer (AAS). Results revealed that the mean concentrations were Zn (1023.68 ± 762.93 μg/g), Pb (78.8 ± 49.61 μg/g), Cu (46.89 ± 43.79 μg/g), Ni (35.54 ± 10.75 μg/g), Cd (0.94 ± 0.29 μg/g), and Fe (7.14 ± 0.94%). Most of the mean values of analyzed metals were below both the interim sediment quality guidelines (ISQG-low and ISQG-high), except for Pb concentration (above ISQG-low) and Zn concentration (above ISQG-high), thus suggesting that Pb and Zn may pose some environmental concern. Cadmium, Pb, and Zn concentrations were above the threshold effect level (TEL), indicating seldom adverse effect of these metals on macrobenthic organisms. Pollution load index (PLI) indicated deterioration and other indices revealed the intertidal surface sediment is moderately polluted with Cd, Pb, and Zn. Therefore, this mangrove area requires urgent attention to mitigate further contamination. Finally, this study will contribute to data sources for Malaysia in establishing her own ISQG since it is a baseline study with detailed contamination assessment indices for surface sediment of intertidal mangrove area.
  15. Ahmad NI, Noh MF, Mahiyuddin WR, Jaafar H, Ishak I, Azmi WN, et al.
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3672-86.
    PMID: 25256581 DOI: 10.1007/s11356-014-3538-8
    This study was conducted to determine the concentration of total mercury in the edible portion of 46 species of marine fish (n = 297) collected from selected major fish landing ports and wholesale markets throughout Peninsular Malaysia. Samples were collected in June to December 2009. Prior to analysis, the fish samples were processed which consisted of drying at 65 °C until a constant weight was attained; then, it was grounded and digested by a microwave digestion system. The analytical determination was carried out by using a mercury analysis system. Total mercury concentration among fish species was examined. The results showed that mercury concentrations were found significantly higher (p 20 cm) and were positively related with fish size (length and weight) in all fish samples. Despite the results, the level of mercury in marine fish did not exceed the permitted levels of Malaysian and JECFA guideline values at 0.5 mg/kg methylmercury in fish.
  16. Qureshi MI, Rasli AM, Awan U, Ma J, Ali G, Faridullah, et al.
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3467-76.
    PMID: 25242593 DOI: 10.1007/s11356-014-3584-2
    The objective of the study is to establish the link between air pollution, fossil fuel energy consumption, industrialization, alternative and nuclear energy, combustible renewable and wastes, urbanization, and resulting impact on health services in Malaysia. The study employed two-stage least square regression technique on the time series data from 1975 to 2012 to possibly minimize the problem of endogeniety in the health services model. The results in general show that air pollution and environmental indicators act as a strong contributor to influence Malaysian health services. Urbanization and nuclear energy consumption both significantly increases the life expectancy in Malaysia, while fertility rate decreases along with the increasing urbanization in a country. Fossil fuel energy consumption and industrialization both have an indirect relationship with the infant mortality rate, whereas, carbon dioxide emissions have a direct relationship with the sanitation facility in a country. The results conclude that balancing the air pollution, environment, and health services needs strong policy vistas on the end of the government officials.
  17. Anyika C, Abdul Majid Z, Ibrahim Z, Zakaria MP, Yahya A
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3314-41.
    PMID: 25345923 DOI: 10.1007/s11356-014-3719-5
    Amending polycyclic aromatic hydrocarbon (PAH)-contaminated soils with biochar may be cheaper and environmentally friendly than other forms of organic materials. This has led to numerous studies on the use of biochar to either bind or stimulate the microbial degradation of organic compounds in soils. However, very little or no attention have been paid to the fact that biochars can give simultaneous impact on PAH fate processes, such as volatilization, sorption and biodegradation. In this review, we raised and considered the following questions: How does biochar affect microbes and microbial activities in the soil? What are the effects of adding biochar on sorption of PAHs? What are the effects of adding biochar on degradation of PAHs? What are the factors that we can manipulate in the laboratory to enhance the capability of biochars to degrade PAHs? A triphasic concept of how biochar can give simultaneous impact on PAH fate processes in soils was proposed, which involves rapid PAH sorption into biochar, subsequent desorption and modification of soil physicochemical properties by biochar, which in turn stimulates microbial degradation of the desorbed PAHs. It is anticipated that biochar can give simultaneous impact on PAH fate processes in soils.
  18. Mohammadpour R, Shaharuddin S, Chang CK, Zakaria NA, Ab Ghani A, Chan NW
    Environ Sci Pollut Res Int, 2015 Apr;22(8):6208-19.
    PMID: 25408070 DOI: 10.1007/s11356-014-3806-7
    Poor water quality is a serious problem in the world which threatens human health, ecosystems, and plant/animal life. Prediction of surface water quality is a main concern in water resource and environmental systems. In this research, the support vector machine and two methods of artificial neural networks (ANNs), namely feed forward back propagation (FFBP) and radial basis function (RBF), were used to predict the water quality index (WQI) in a free constructed wetland. Seventeen points of the wetland were monitored twice a month over a period of 14 months, and an extensive dataset was collected for 11 water quality variables. A detailed comparison of the overall performance showed that prediction of the support vector machine (SVM) model with coefficient of correlation (R(2)) = 0.9984 and mean absolute error (MAE) = 0.0052 was either better or comparable with neural networks. This research highlights that the SVM and FFBP can be successfully employed for the prediction of water quality in a free surface constructed wetland environment. These methods simplify the calculation of the WQI and reduce substantial efforts and time by optimizing the computations.
  19. Razak IS, Latif MT, Jaafar SA, Khan MF, Mushrifah I
    Environ Sci Pollut Res Int, 2015 Apr;22(8):6024-33.
    PMID: 25382497 DOI: 10.1007/s11356-014-3781-z
    This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F(-), Cl(-), NO3(-), and SO4(2-)) and the Nessler Method was used to obtain the NH4(+) concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93%) and biomass burning (2 to 22%).
  20. Tahir NM, Pang SY, Simoneit BR
    Environ Sci Pollut Res Int, 2015 May;22(10):7557-68.
    PMID: 25752627 DOI: 10.1007/s11356-015-4184-5
    Three short sediment cores from inner continental shelf of the southern South China Sea (5-50 km) off Terengganu were analyzed for lipid contents (i.e., homologous aliphatic compounds and sterols) using gas chromatography-mass spectrometry. The concentrations of the total aliphatic hydrocarbons (TAHs) ranged from 0.152 to 6.91 μg/g dry weight. The n-alkane distribution was from nC₁₃ to nC₃₆, with a carbon preference index (CPI₁₃₋₃₅) from 1.08 to 4.28 and a carbon number maximum (Cmax), depending on a sample, at 31 or 18. In addition, a strong odd-to-even carbon number predominance was observed in nC₂₅-nC₃₅ range. The distribution of the n-alkanoic acids and n-alkanols in all samples exhibited an even-to-odd carbon number predominance and ranged from C₁₀ to C₂₆ and from C₁₂ to C₃₄, respectively. The n-alkanols were dominated by the long-chain homologs with Cmax at 22; on the other hand, the n-alkanoic acid distributions showed a predominance of short-chain homologs with a Cmax at 16. The total sterol concentrations ranged from 0.41 to 3.57 μg/g dry weight. Cholesterol was most abundant at the offshore stations, whereas sitosterol was dominant at near-shore station. Pentacyclic triterpenoids such as friedelin and taraxerol α- and β-amyrins, which are known biomarkers for higher plants, were detected at all stations with a dilution trend offshore. In conclusion, the marine sediments off southern Terengganu can still be considered uncontaminated, where the compound sources are biogenic from terrestrial plants superimposed with a marine productivity input.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links